• Title/Summary/Keyword: SAM phantom

Search Result 61, Processing Time 0.032 seconds

Evaluation of the Effect of Metal Artifacts Varying the Parameters of the Attenuation Map for the artificial Hip Joint in SPECT/CT (SPECT/CT에서 인공고관절에 대한 감쇠보정지도(Attenuation Map)의 매개변수 변화에 따른 금속 인공물(Metal Artifact)의 영향 평가)

  • Kim, Sang Gyu;Kim, Jung Yul;Park, Min Soo;Jo, Seung Hyun;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.3-7
    • /
    • 2014
  • Purpose SPECT/CT scan to be performed attenuation correction on the basis of CT induce an overestimation of the site due to the beam hardening artifact by metal cover and reduce the images quality. Therefore, this study using a phantom that has been inserted artificial hip joint investigated that effect on the SPECT/CT image causing by metal artifact for varying the parameters of the Attenuation Map. Materials and Methods Siemens Symbia T16 SPECT/CT equipment was used. Artificial hip joint was inserted to SPECT/PET phantom, 17 mm sphere of Bright Streak area in CT image was filled with Tc-99m so that the radiation activity was 8 times compared to background. And then Hot and Background was measured in varying Wide Beam Coefficient on Attenuation Map and RBR (Region to Background Ratio) of Metal and Non-Metal was calculated and analyzed depending on the presence or absence of the hip joint. Results It tended to hot count of Non-Metal and Metal to increase as the value of the manual mode is increased, hot count ratio with the group of both manual mode 0.5 and 0.4 is the best match. Also, in automatic mode, the ratio of RBRNon-Metal and RBRMetal was 1.135, statistically significant difference was not observed in the manual mode 0.5 and 0.4. Conclusion In the automatic mode of Wide Beam Coefficient in attenuation correction map, it was found that it is over-correction by 13.52%, it was possible to minimize the over-correction by the artifact in 0.5 and 0.4 of manual mode. Further studies should be performed in order to apply to a patient with the help of this and it is considered possible to reduce the over-correction by the metal artifact of an artificial hip joint for Hip-Resurfacing Arthroplasty patients, and to improve the diagnostic performance.

  • PDF

DISTRIBUTION OF ABSORBED DOSES TO THE IMPORTANT ORGANS OF HEAD AND NECK REGION IN PANORAMIC RADIOGRAPHY (파노라마 촬영시 두경부 주요기관에 대한 흡수선량 분포)

  • Kim Byeong Sam;Choi Karp Shik;Kim Chin Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.2
    • /
    • pp.253-264
    • /
    • 1990
  • The purpose of this study was to estimate the distribution of absorbed doses of each important organs of head and neck region in panoramic radiography. Radiation dosimetry at internal anatomic sites and skin surfaces of phantom (RT-210 Humanoid Head & Neck Section/sup R/) was performed with lithium fluoride (TLD-100/sup R/) thermoluminescent dosimeters according to change of kilovoltage (65kVp, 75kVp and 85kVp) with 4 miliamperage and 20 second exposure time. The results obtained were as follows; Radiation absorbed doses of internal anatomic sites were presented the highest doses of 1.04 mGy, 1.065 mGy and 2.09 mGy in nasopharynx, relatively high doses of 0.525 mGy, 0.59 mGy and 1.108 mGy in deep lobe of parotid gland, 0.481 mGy, 0.68 mGy and 1.191 mGy in submandibular gland. But there were comparatively low doses of 0.172 mGy and 0.128 mGy in eyes and thyroid gland that absorbed dose was estimated at 85kVp. Radiation absorbed doses of skin surfaces were presented the highest doses of 1. 263 mGy, 1.538 mGy and 2.952 mGy in back side of first cervical vertebra and relatively high doses of 0.267 mGy, 0.401 mGy and 0.481 mGy in parotid gland. But there were comparatively low doses of 0.057 mGy, 0.068 mGy and 0.081 mGy in philtrum and 0.059 mGy in middle portion of chin that absorbed dose was estimated at 85kVp. According to increase of kilovoltage, the radiation absorbed doses were increased 1.1 times when kilovolt age changes from 65kVp to 75kVp and 1.9 times when kilovolt age changes from 75kVp to 85kVp at internal anatomic sites. According to increase of kilovoltage, the radiation absorbed doses were increased 1.3 times when kilovolt age changes from 65kVp to 75kVp and 1.6 times when kilovoltage changes from 75kVp to 85kVp at skin surfaces.

  • PDF

Comparison of Collimator Choice on Image Quality of I-131 in SPECT/CT (I-131 SPECT/CT 검사의 에서 조준기 종류에 따른 영상 비교 평가)

  • Kim, Jung Yul;Kim, Joo Yeon;Nam-Koong, Hyuk;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • Purpose: I-131 scan using High Energy (HE) collimator is generally used. While, Medium Energy (ME) collimator is not suggested to use in result of an excessive septal penetration effects, it is used to improve the sensitivities of count rate on lower dose of I-131. This research aims to evaluate I-131 SPECT/CT image quality using by HE and ME collimator and also find out the possibility of ME collimator clinical application. Materials and Methods: ME and HE collimator are substituted as Siemens symbia T16 SPECT/CT, using I-131 point source and NEMA NU-2 IQ phantom. Single Energy Window (SEW) and Triple Energy Windows (TEW) are applied for image acquisition and images with CTAC and Scatter correction application or not, applied different number of iteration and sub set are reconstructed by IR method, flash 3D. By analysis of acquired image, the comparison on sensitivities, contrast, noise and aspect ratio of two collimators are able to be evaluated. Results: ME Collimator is ahead of HE collimator in terms of sensitivity (ME collimator: 188.18 cps/MBq, HE collimator: 46.31 cps/MBq). For contrast, reconstruction image used by HE collimator with TEW, 16 subset 8 iteration applied CTAC is shown the highest contrast (TCQI=190.64). In same condition, ME collimator has lower contrast than HE collimator (TCQI=66.05). The lowest aspect ratio for ME collimator and HE collimator are 1.065 with SEW, CTAC (+) and 1.024 with TEW, CTAC (+) respectively. Conclusion: Selecting a proper collimator is important factor for image quality. This research finding tells that HE collimator, which is generally used for I-131 scan emitted high energy ${\gamma}$-ray is the most recommendable collimator for image quality. However, ME collimator is also applicable in condition of lower dose, lower sensitive if utilizing energy window, matrix size, IR parameter, CTAC and scatter correction appropriately.

  • PDF

Study on Image Quality Assessment in Whole Body Bone Scan (전신 뼈검사에서의 영상 평가 연구)

  • Kwon, Oh Jun;Hur, Jae;Lee, Han Wool;Kim, Joo Yeon;Park, Min Soo;Roo, Dong Ook;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • Purpose Whole body bone scan, which makes up a largest percentage of nuclear medicine tests, has high sensitivity and resolution about bone lesion like osteomyelitis, fracture and the early detection of primary cancer. However, any standard for valuation has not yet been created except minimum factor. Therefore, in this study, we will analysis the method which show a quantitative evaluation index in whole body bone scan. Materials and Methods This study is conducted among 30 call patients, who visited the hospital from April to September 2014 with no special point of view about bone lesion, using GE INFINIA equipment. Enumerated data is measured mainly with patient's whole body count and lumbar vertabrae, and the things which include CNR (Contrast to Noise ratio), SNR (Signal to Noise ratio) are calculated according to the mean value signal and standard deviation of each lumbar vertabrae. In addition, the numerical value with the abdominal thickness is compared to each value by the change of scan speed and tissue equivalent material throughout the phantom examination, and compared with 1hours deleyed value. Completely, on the scale of ten, 2 reading doctors and 5 skilled radiologists with 5-years experience analysis the correlation between visual analysis with blind test and quantitative calculation. Results The whole body count and interest region count of patients have no significant correlation with visual analysis value throughout the blind test(P<0.05). There is definite correlation among CNR and SNR. In phantom examination, Value of the change was caused by the thickness of the abdomen and the scan speed. And The poor value of the image in the subject as a delay test patient could be confirmed that the increase tendency. Conclusion Now, a standard for valuation has not been created in whole body bone scan except minimum factor. In this study, we can verify the significant correlation with blind test using CNR and SNR and also assure that the scan speed is a important factor to influence the imagine quality from the value. It is possible to be some limit depending on the physiology function and fluid intake of patient even if we progress the evaluation in same condition include same injection amount, same scan speed and so on. However, that we prove the significant evaluation index by presenting quantitative calculation objectively could be considered academic value.

  • PDF

Effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield units of hydroxyapatite in virtual monochromatic images obtained with dual-energy CT

  • Jeong, Dae-Kyo;Lee, Sam-Sun;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.273-279
    • /
    • 2019
  • Purpose: This study was performed to investigate the effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield unit (HU) values of hydroxyapatite (HA) in virtual monochromatic images (VMIs) obtained with dual-energy computed tomography (DECT)(Siemens Healthineers, Erlangen, Germany). Materials and Methods: A bone density calibration phantom with 3 HA inserts of different densities(CTWATER®; 0, 100, and 200 mg of HA/㎤) was scanned using a twin-beam DECT scanner at 120 kVp with tube rotation times of 0.5 and 1.0 seconds. The VMIs were reconstructed by changing the energy level (with options of 40 keV, 70 keV, and 140 keV). In order to investigate the impact of the reconstruction kernel, virtual monochromatic images were reconstructed after changing the kernel from body regular 40 (Br40) to head regular 40 (Hr40) in the reconstruction phase. The mean HU value was measured by placing a circular region of interests (ROIs) in the middle of each insert obtained from the VMIs. The HU values were compared with regard to energy level, reconstruction kernel, and tube rotation time. Results: Hydroxyapatite density was strongly correlated with HU values(correlation coefficient=0.678, P<0.05). For the HA 100 and 200 inserts, HU decreased significantly at increased energy levels(correlation coefficient= -0.538, P<0.05) but increased by 70 HU when using Hr40 rather than Br40 (correlation coefficient=0.158, P<0.05). The tube rotation time did not significantly affect the HU(P>0.05). Conclusion: The HU values of hydroxyapatite were strongly correlated with hydroxyapatite density and energy level in VMIs obtained with DECT.

Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays (6MV X선에 있어서 쇄기형 조사야와 개방 조사야 사이의 깊이 선량률의 차이)

  • U, Hong;Ryu, Sam-Uel;Park, In-Kyu
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.279-285
    • /
    • 1989
  • Central axis depth dose data for 6 MV X-rays, including tissue maximum ratios, were measured for wedge fields according to Tatcher's equation. In wedge fields, the differences in magnitude which increased with depth, field size, and wedge thickness increased when compared with the corresponding open field data. However, phantom scatter correction factors for wedge fields differed less than $1\%$ from the corresponding open field factors. The differences in central axis percent depth dose between two types of fields indicated beam hardening by the wedge filter The deviation of percent depth doses and scatter correction factors between the effective wedge field and the nominal wedge field at same angle was negligible. The differences were less than $3.20\%$ between the nominal or effective wedge fields and the open fields for percent depth doses to the depth 7cm in $6cm{\times}6cm$ field. For larger $(10cm{\times}10cm)$ field size, however, the deviation of percnet depth doses between the nominal or effective wedge fields and the open fields were greater-dosimetric errors were $3.56\%$ at depth 7cm and nearly $5.30\%$ at 12cm. We suggest that the percent depth doses of individual wedge and wedge transmission factors should be considered for the dose calculation or monitor setting in the treatment of deep seated tumor.

  • PDF

Quality Assurance of Volumetric Modulated Arc Therapy for Elekta Synergy (Elekta Synergy 선형가속기를 이용한 입체적세기조절회전방사선치료(VMAT) 정도관리)

  • Shim, Su-Jung;Shim, Jang-Bo;Lee, Sang-Hoon;Min, Chul-Kee;Cho, Kwang-Hwan;Shin, Dong-Oh;Choi, Jin-Ho;Park, Sung-Ill;Cho, Sam-Ju
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.33-41
    • /
    • 2012
  • For applying the quality assurance (QA) of volumetric modulated arc therapy (VMAT) introduced in Eulji Hospital, we classify it into three different QA steps, treatment planning QA, pretreatment delivering QA, and treatment verifying QA. These steps are based on the existing intensity modulated radiation therapy (IMRT) QA that is currently used in our hospital. In each QA step, the evaluated items that are from QA program are configured and documented. In this study, QA program is not only applied to actual patient treatment, but also evaluated to establish a reference of clinical acceptance in pretreatment delivering QA. As a result, the confidence limits (CLs) in the measurements for the high-dose and low-dose regions are similar to the conventional IMRT level, and the clinical acceptance references in our hospital are determined to be 3 to 5% for the high-dose and the low-dose regions, respectively. Due to the characteristics of VMAT, evaluation of the intensity map was carried out using an ArcCheck device that was able to measure the intensity map in all directions, $360^{\circ}$. With a couple of dosimetric devices, the gamma index was evaluated and analyzed. The results were similar to the result of individual intensity maps in IMRT. Mapcheck, which is a 2-dimensional (2D) array device, was used to display the isodose distributions and gave very excellent local CL results. Thus, in our hospital, the acceptance references used in practical clinical application for the intensity maps of $360^{\circ}$ directions and the coronal isodose distributions were determined to be 93% and 95%, respectively. To reduce arbitrary uncertainties and system errors, we had to evaluate the local CLs by using a phantom and to cooperate with multiple organizations to participate in this evaluation. In addition, we had to evaluate the local CLs by dividing them into different sections about the patient treatment points in practical clinics.

Standard Performance Measurements of GE $Advance^{TM}$ Positron Emission Tomography (GE $Advance^{TM}$ 양전자방출단층촬영기의 표준 성능평가)

  • Jeong, Ha-Kyu;Kim, Hee-Joung;Son, Hye-Kyung;Bong, Jung-Kyun;Jung, Hai-Jo;Jeon, Tae-Joo;Kim, Jae-Sam;Lee, Jong-Doo;Yoo, Hyung-Sik
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.2
    • /
    • pp.100-112
    • /
    • 2001
  • Purpose: The purpose of this study was to establish optimal imaging acquisition conditions for the GE $Advance^{TM}$ PET imaging system by performing the acceptance tests designed by National Electrical Manufacturers Association (NEMA) protocol and General Electric Medical Systems (GEMS) test procedures. Materials and Methods: Performance tests were carried out with $^{18}FDG$ radioactivity source and phantoms by using a standard acquisition mode. Transaxial resolution and scatter traction tests were performed with a line source and axial resolution with a point source, respectively. A cylindrical phantom made of polymethylmethacrylate (PMMA) was used to measure sensitivity, count rate losses and randoms, uniformity correction, and attenuation inserts were added to measure remaining tests. The test results were acquired in a diagnostic acquisition mode and analyzed mainly on high sensitivity mode. Results: Transaxial resolution and axial resolution were measured as average of 4.65 mm and 3.98 mm at 0 cm, and 6.02 mm and 6.71 mm at 20 cm on high sensitivity mode, respectively. Average scatter fraction was 9.87%, and sensitivity was $225.8kcps/{\mu}Ci/cc$ of trues. Activity at 50% deadtime was $4.6{\mu}Ci/cc$, and the error of count rate correction at that activity was from 1.49% to 3.83%. Average nonuniformity for total slice w3s 8.37%. The accuracy of scatter correction was -0.95%. The accuracies of attenuation correction were 5.68% for air, 0.04% for water and -6.51% for polytetrafluoroethylene (PTFE). Conclusion: The results satisfied most acceptance criteria, indicating that the GE $Advance^{TM}$ PET system can be optimally used for clinical applications.

  • PDF

A Study of Optimized MRI Parameters for Polymer Gel Dosimetry (중합체 겔 선량측정법을 위한 최적의 자기공명영상 변수에 관한 연구)

  • Cho, Sam-Ju;Chung, Young-Lip;Lee, Sang-Hoon;Huh, Hyun-Do;Choi, Jin-Ho;Park, Sung-Ill;Shim, Su-Jung;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • In order to verify exact dose distributions in the state-of-the-art radiation techniques, a newly designed three-dimensional dosimeter and technique has been took strongly into consideration. The main purpose of our study is to verify the optimized parameters of polymer gel as a real volumetric dosimeter in terms of the various study of MRI. We prepared a gel dosimeter by combing 8% of gelatin, 8% of MAA, and 10 mM of THPC. We used a Co-60 gamma-ray teletherapy unit and delivered doses of 0, 2, 4, 6, 8, 10, 12, and 14 Gy to each polymer gel with a solid phantom. We used a fast spin-echo pulse to acquire the characterized T2 time of MRI. The signal noise ratio (SNR) of the head & neck coil was a relatively lower sensitivity than the body coil; therefore the dose uncertainty of head & neck coil would be lower than body coil's. But the dose uncertainty and resolution of the head & neck coil were superior to the body coil in this study. The TR time between 1,500 ms and 2,000 ms showed no significant difference in the dose resolution, but TR of 1,500 ms showed less dose uncertainty. For the slice thickness of 2.5 mm, less dose uncertainty of TE times was at 4 Gy, as well, it was the lowest result over 4 Gy at TE of 12 ms. The dose uncertainty was not critical up to 6 Gy, but the best dose resolution was obtained at 20 ms up to 8 Gy. The dose resolution shows the lowest value was over 20 ms and was an excellent result in the number of excitation (NEX) of three. The NEX of two was the highest dose resolution. We concluded that the better result of slice thickness versus NEX was related to the NEX increment and thin slice thickness.

The Effect of Increase in Length and Volume of Source in Radioactive Iodine Thyroid Uptake Rate (갑상선 섭취율 측정에서 선원의 길이와 부피 증가에 따른 영향)

  • Hwang, Dong Hun;Oh, Shin Hyun;Kim, Jung Yul;Kang, Chun Koo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.70-75
    • /
    • 2017
  • Purpose Radioactive iodine thyroid uptake (RAIU) rate is an examination which determines and seeks about general functions of thyroid gland. The size of thyroid gland is normally different between each person, also patients having thyroid diseases have had a variety of size of thyroid gland compared with others. The purpose of this study will investigate about the counting rate which is effected by the geometric factors through the length and volume changes of the source in RAIU rate. Materials and Methods I-131 185 kBq ($5{\mu}Ci$) were placed in a cylindrical phantom of 0.5 cm, 1 cm, 1.5 cm, and 3 cm in diameter, respectively, and saline was added to gradually increase the length by 1 cm in the horizontal and vertical directions to give a change in volume. The source was measured 20 times for 20 seconds from a distance of 25 cm to $364.4keV{\pm}20%$ energy ROI with Captus 3000 thyroid uptake system (Capintec, NJ, USA). Results When the source was located in the transverse direction of the detector, the consequence of one-way ANOVA is that even though the length of source is increased each diameter, there is mostly no significant difference. When the source was located in the longitudinal direction and the counting rate of length 1 cm at all diameter is set to 100%, the average is 92.57% for length 2 cm, 86.1% for 3 cm, 80.69% for 4 cm, 74.82% for 5 cm, and 69.68% at 6 cm. Conclusion According to this study, it is expected that the gap of RAIU rate has been depended on the thickness of thyroid gland as well as the diameter of the beaker. We know that the change of the volume with the increase of the length of the source had less effect on the change of the counting rate. Thus, in order to reduce the error in the measurement of the counting rate with the thyroid uptake rate equipment, an accurate counting rate can be relatively measured if the counting rate which is measured is corrected by thickness or the distance between the thyroid and the thyroid uptake rate equipment is changed.

  • PDF