• Title/Summary/Keyword: SALT REDUCTION

Search Result 551, Processing Time 0.041 seconds

Effects of microplastics and salinity on food waste processing by black soldier fly (Hermetia illucens) larvae

  • Cho, Sam;Kim, Chul-Hwan;Kim, Min-Ji;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Background: The black soldier fly (Hermetia illucens) is gaining attention as an efficient decomposer of food waste. However, recalcitrant compounds such as plastics mixed into food waste may have negative effects on its growth and survival. Moreover, its efficiency of food waste degradation may also be affected by plastics. In addition, salt (NaCl) can also be present in high concentrations, which also reduces the efficiency of H. illucens-mediated food waste treatment. In this study, we assessed the growth of black soldier fly larvae (BSFL) reared on food waste containing polyethylene (PE) and polystyrene (PS) and NaCl. The weight of BSFL was measured every 2-4 days. Survival and substrate reduction rates and pupation ratio were determined at the end of the experiment. Results: The total larval weight of Hermetia illucens reared on food waste containing PS was greater than that of the control on days 20 and 24. However, the survival rate was lower in the group treated with 5% PS, as was substrate reduction in all PS-treated groups. The weight of BSFL reared on food waste containing PE was lower than that of the control on day 6. PE in food waste did not affect the survival rate, but the pupation ratio increased and substrate consumption decreased with increasing PE concentrations. Regardless of the plastic type, the addition of NaCl resulted in decreased larval weight and pupation ratio. Conclusions: Larval growth of black soldier fly was inhibited not by plastics but by substrate salinity. Additional safety assessments of larvae reared on food waste containing impurities are needed to enable wider application of BSFL in vermicomposting.

Study on the Preparation of Nickel Cabonate Using Nickel Chloride Prepared from Nickel MHP (니켈 MHP로부터 제조된 염화니켈을 이용한 탄산니켈 제조연구)

  • Kang, Yong-Ho;Shin, Gi-Wung;Hyun, Soong-Keun
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.23-29
    • /
    • 2018
  • Generally $NiSO_4$ and $NiCl_2$ were used as raw materials for producing nickel carbonate. In the case of the produced nickel carbonate, $Na_2SO_4$ and NaCl are generated on the surface and inside of the nickel carbonate to decrease the purity of the nickel carbonate. High purity nickel carbonate can be produced according to the degree of removal of such impurities. In this study, $NiCl_2$ produced by nickel MHP solvent extraction process was used to study the production of nickel carbonate. High purity nickel carbonate was prepared by the conditions according to the nickel salt and carbonate equivalence ratio, the reduction of Na and Cl in nickel carbonate according to the washing of nickel carbonate, and the reduction of Na and Cl according to the washing water temperature.

Preparation of Nano-sized Pt Powders by Solution-phase Reduction (액상환원법(液相還元法)에 의한 백금(白金) 나노분말(粉末) 제조(製造))

  • Kim, Chul-Joo;Yoon, Ho-Sung;Cho, Sung-Wook;Sohn, Jung-Soo
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.36-40
    • /
    • 2007
  • Platinum plays an important role in many applications because of its extraordinary physical and chemical properties. All these applications require the use of platinum in the finely divided state. Therefore the preparation of platinum nanoparticles by reducing platinum-surfactant salt with reducing agent in the solution was investigated in this study. The net interaction between C14TABr and $H_2[PtCl_6]$ in aqueous solution results in the formation of $[C14TA]_2[PtCl_6]$. The concentration of C14TABr and the concentration of $H_2[PtCl_6]$ has to be above cmc and 0.32 mM, respectively in order to obtain complex-micelle aggregation for mono dispersed Pt particles. Pt particle size increases with increasing $H_2[PtCl_6]$ and C14TABr concentration. And the shape of Pt particles was well controlled with increasing surfactant concentration.

Polymer Effects on Appetite Suppression by Lipoic Acid Nanoparticles (리포익산 나노 입자의 식욕 억제에 대한 고분자의 영향)

  • Choi, Hye-Min;Park, Chul-Ho;Lee, Ki-Up;Park, Joong-Yeol;Koh, Eun-Hee;Kim, Hyoun-Sik;Lee, Jong-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.349-354
    • /
    • 2007
  • For decades, the various virtues of ${\alpha}-lipoic$ acid (ALA), a natural material synthesized in most cells, have been intensively studied and proved. Recently it was reported that ALA caused significant bodyweight reduction via appetite suppression. Unfortunately, the efficacy requires an administration over 50 mg/kg. The low bioavailability and the short plasma half life of ALA lead us to explore novel pharmaceutical dosage forms using nanoparticles. In this study, the effect of polymeric stabilizers on the bioavailability improvement of ALA nanoparticles was investigated. The reduction of particle size via nano-comminution technology was successful resulting in volume average particle sizes of 320 - 340 nm. The in vitro release rate of ALA did not reflect the decrease of particle size, possibly because of the self polymerization of ALA during nano-comminution. The type of polymeric stabilizers could not affect the release rate either. However, the in vivo food intake results of ALA showed that nano-suspensions were more effective than microparticles or a salt form. The nano-suspension containing polyvinyl pyrrolidone as the primary stabilizer and polyacrylic acid as the secondary stabilizer showed more improved efficacy for 2 hours.

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

Limiting Pink Discoloration in Cooked Ground Turkey in the Absence or Presence of Sodium Tripolyphosphate Produced from Presalted and Stored Raw Ground Breasts

  • James R. Claus;Jong Youn Jeong
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.331-345
    • /
    • 2023
  • The effects of pink inhibiting ingredients (PII) to eliminate the pink color defect in cooked turkey breast produced from presalted and stored raw ground turkey in the absence or presence of sodium tripolyphosphate (STP) were examined. Ground turkey breast was mixed with 2% sodium chloride and vacuum packaged. After storage for 6 d, ten PII were individually incorporated without or with added STP (0.5%) as follows: none (control), citric acid (CA; 0.1%, 0.2%, 0.3%), calcium chloride (CC; 0.025%, 0.05%), ethylenediaminetetraacetic acid disodium salt (EDTA; 0.005%, 0.01%), and sodium citrate (SC; 0.5%, 1.0%). Treatments were cooked at a fast or slow cooking rate, cooled, and stored before analysis. All PII tested were capable of lowering inherent pink color compared to the control (No STP: CIE a* pooled day reduction of 23.0%, 5.2%, 12.6%, and 12.6% for CA, CC, EDTA, and SC, respectively; STP: reduction of 21.5%, 17.4%, 6.0%, and 18.2% for CA, CC, EDTA, and SC, respectively). For samples without STP, fast cooking rate resulted in higher CIE a*. However, slow cooking resulted in more red products than fast cooking when samples included STP. Presalting and storage of ground turkey caused the pink discoloration in uncured, cooked turkey (CIE a* 6.24 and 5.12 for without and with STP). This pink discoloration can be decreased by inclusion of CA, CC, EDTA, or SC, but incorporation of CA decreased cooking yield. In particular, the addition of SC may provide some control without negatively impacting the cooking yield.

Analysis on Distribution Characteristics of Spent Fuel in Electrolytic Reduction Process (전해환원 공정에서의 사용후핵연료 분배 특성 분석)

  • Park, Byung Heung;Lee, Chul Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.696-701
    • /
    • 2012
  • Non-aqueous processes have been developed for stable management and reuse of spent fuels. Nowadays, a plan for the management of spent fuel is being sought focusing on a non-aqueous process in Korea. Named as pyroprocessing, it includes an electrolytic reduction process using molten salt at high temperature for the spent fuels, which provides metallic product for a following electro-refining process. The electrolytic reduction process utilizes electrochemical reaction producing Li to convert oxides into metals in high temperature LiCl medium. Various kinds of elements in the spent fuels would be distributed in the system according to their respective reactivity with the reductant, Li, and the medium, LiCl. This study elucidates the reactions of the elements to understand the behavior of composite elements on the spent fuels by thermodynamic calculations. Uranium and transuranic are reduced into their metallic forms while rare-earth oxides, except for Eu, are stable against the reaction at a process temperature. This study also covers the tendency of reactions with respect to the temperature and, finally, estimates radioactivity and heat load on the distributed phases based on the reference spent fuel characteristics.

Salts Reduction Effect of Natural Zeolite in Plastic Film House Soil (천연 Zeolite를 이용한 시설재배지 토양의 염류제거 효과)

  • Wee, Chi-Do;Li, Jun-Xi;Kim, Hong-Lim;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.552-557
    • /
    • 2010
  • This study was performed to investigate the effect of zeolite on the reduction of soil EC level in the plastic film house. The EC level of experimental soil was 5.0 dS $m^{-1}$ and the zeolite was applied to the soil at seven levels (0.5, 1, 2, 5, 10, 15, 20%) with three replications. The reduction degree of soil EC level showed positive tendency to the mixing ratio of zeolite. Especially, the EC level reduced rapidly from 5.01 to 2.8 dS $m^{-1}$ in the plot where zeolite was mixed by 20% 10 days after treatment. The pH level of soil was in positive relation to the mixing ratio of zeolite, contrary to the negative relation to the concentration level of water soluble Ca, Mg and phosphorus (P). The water contents of soil mixed with 15% and 20% zeolite were 14% and 17.3% respectively but it was 12.7% for control soil. Therefore, we expect natural zeolite to salts reduction agent for exchangeable cation and phosphate which is difficult to reduce by watering and other methods.

Production Technology of Titanium by Kroll Process (Kroll법에 의한 타이타늄의 제조기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.3-14
    • /
    • 2020
  • Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reduction-distillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.

Removal of Pesticide Residues in Field-sprayed Leafy Vegetables by Different Washing Method (엽채류에 엽면 살포된 농약의 세척 방법에 따른 제거)

  • Kwon, Hyeyoung;Kim, Taek-Kyum;Hong, Su-Myeong;Kim, Chan-Sub;Baeck, Minkyeong;Kim, Doo-Ho;Son, Kyung-Ae
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.237-243
    • /
    • 2013
  • Pesticides were sprayed on perilla leaf and leafy lettuce in a greenhouse and the reduction rate of pesticide residues on each vegetable by washing were tested. The reduction rate of pesticide residues by washing for 30 sec~3 min on perilla leaf were 3~63% in tap water, 2~58% in salt water, 6~74% in green tea water, and 8~86% in detergent solution. The detergent solution only showed significant difference in reduction rates compared to the tab water washing. Considering reduction effects of the washing duration, it was showed that the reduction rates were a pattern of inclining as the duration of washing process increased, but there was no significant difference in the reduction rates except the reduction rates between washing in the detergent solution for 1 min and 3 min. Comparing washing in flowing tab water and in stagnant tab water with leafy lettuce, the reduction rate by one time washing were 8~68% in flowing tab water and 7~64% in stagnant tab water. The water and the time used in this experiment were 17.5 L, 2.9 min with flowing tab water and 4 L, 1 min with stagnant tab water. The reduction rate by 3 times washing in stagnant tab water were 16.5~76.6%, and the water and the time used were 12 L, 3 min. Therefore, when the water and the time used to wash vegetables were considered, washing two or three times in stagnant tab water could be more effective than washing one time in flowing tab water.