Preparation of Nano-sized Pt Powders by Solution-phase Reduction

액상환원법(液相還元法)에 의한 백금(白金) 나노분말(粉末) 제조(製造)

  • 김철주 (한국지질자원연구원 자원활용소재연구부) ;
  • 윤호성 (한국지질자원연구원 자원활용소재연구부) ;
  • 조성욱 (한국지질자원연구원 자원활용소재연구부) ;
  • 손정수 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2007.10.27

Abstract

Platinum plays an important role in many applications because of its extraordinary physical and chemical properties. All these applications require the use of platinum in the finely divided state. Therefore the preparation of platinum nanoparticles by reducing platinum-surfactant salt with reducing agent in the solution was investigated in this study. The net interaction between C14TABr and $H_2[PtCl_6]$ in aqueous solution results in the formation of $[C14TA]_2[PtCl_6]$. The concentration of C14TABr and the concentration of $H_2[PtCl_6]$ has to be above cmc and 0.32 mM, respectively in order to obtain complex-micelle aggregation for mono dispersed Pt particles. Pt particle size increases with increasing $H_2[PtCl_6]$ and C14TABr concentration. And the shape of Pt particles was well controlled with increasing surfactant concentration.

백금은 물리화학적 특성에 기인하여 많은 분야에서 중요한 역할을 하고 있으며, 이러한 분야에서는 아주 미세한 백금의 사용을 요구하고 있다. 그러므로 본 연구에서는 액상에서 환원제를 사용하여 백금염을 환원시킴으로서 나노크기의 백금을 제조하는 방법에 대하여 알아보았다. 수용액상에서 C14TABr과 $H_2[PtCl_6]$ 상호작용은 $[C1_4TA]_2[PtCl_6]$의 유기백금염 화합물을 형성한다. 단분산 나노 백금입자를 얻기 위해서는 $C1_4TABr$$H_2[PtCl_6]$ 농도가 각각 cmc와 0.32 mM 이상이 되어야 한다. $H_2[PtCl_6]$와 C14TABr 농도가 증가함에 따라 백금입자 크기가 증가하였으며, 백금입자의 형태는 C14RABr농도 증가에 따라 제어가 가능하였다.

Keywords

References

  1. Wu M. L., Chen D. H. and Huang T. C., 2001 : Preparation of Pd/Pt Bimetallic Nanoparticles in Water/AOT/isooctane Microemulsions, J. Colloid Interface Sci, 243, pp. 102-108 https://doi.org/10.1006/jcis.2001.7887
  2. Tang Z., Geng D. and Lu G., 2005 : A simple solutionphase reduction method for the synthesis of shapecontrolled platinum nanoparticles, Materials Letters, 59, pp. 1567-1570 https://doi.org/10.1016/j.matlet.2005.01.024
  3. Xiao L. et al., 2004 : Tuning the Architecture of Mesostructure by Electrodeposition, J. Am. Chem. Soc., 126, pp. 2316-2317 https://doi.org/10.1021/ja0315154
  4. Tang H. et aI., 2004 : High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs), J. Colloid Interface Sci., 269, pp. 26-31 https://doi.org/10.1016/S0021-9797(03)00608-8
  5. Lu Q., Gao F., Komarneni S., 2004 : Bimolecule-Assisted Synthesis of Highly Ordered Snowflakelike Structures Bismuth Sulfide Nanorods, J. Am. Chem. Soc., 126, pp. 54-55 https://doi.org/10.1021/ja0386389
  6. Zhu J. et al., 2000 : Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods, Langmuir, 16, pp. 6396-6399 https://doi.org/10.1021/la991507u
  7. Veisz B. and Kiraly Z., 2003 : Size-Selective Synthesis of Cubooctahedral Palladium Particles Mediated by Metallomicelles, Langmuir, 19, pp. 4817-4824 https://doi.org/10.1021/la034146y
  8. Puvvada S. et al., 2000 : Synthesis of palladium metal nanoparticles in the bicontinuous cubic phase of glycerol monooleate, J. Am. Chem. Soc., 116, pp. 2135-2136 https://doi.org/10.1021/ja00084a060
  9. Kiraly Z. et al., 2001 : Preparation of Ultrafine Palladium Particles on Cationic and Anionic Clays, Mediated by Oppositely Charged Surfactants: Catalytic Probes in Hydrogenations, Langmuir, 17, pp. 5381-5387 https://doi.org/10.1021/la0102004
  10. Haak J. R., Rupert L. A. M., 1993 : 'Physicochemical Properties of Selected Anionic, Cationic and Nonionic Surfactants', Elsevier: Amsterdam, pp. 110-136
  11. Creighton J. A. and Eadon D. G., 1991 : Ultraviolet-Visible Absorption Spectra of Colloidal Metallic Elements, J. Chem. Soc. Faraday Trans, 87(24), pp. 3881-3891 https://doi.org/10.1039/ft9918703881
  12. Veisz B. et al., 2005 : Palladium-platinum powder catalysts manufactured by colloidal synthesis I. Preparation and characterization, J. of Molecular Catalysis A: Chemical, 238, pp. 56-62 https://doi.org/10.1016/j.molcata.2005.04.064