• 제목/요약/키워드: S-shape Nozzle

검색결과 84건 처리시간 0.018초

SAC 형상이 분사특성 및 분무형상에 미치는 영향 (Influence of SAC Shape on Injection Characteristics and Spray)

  • 김상진;권순익
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.11-18
    • /
    • 2001
  • To clarify the influence of SAC shape of hole-type diesel nozzle on injection characteristics and spray patterns, the injection rate of three nozzle types(standard SAC nozzle, Needle-cut VCO nozzle and VCO nozzle) were measured by Zeuch's method and pictures of the sprays were taken by CCD camera. As the pump speed became higher, the injection characteristics of the three nozzles were different. Injection rate and perssure curves at the high pressure pipe in Needle-cut VCO nozzle were much more similar to the VCO nozzle than those of the SAC nozzle. When the needle was at pre-lift period for all speeds, the spray of the Needle-cut VCO nozzle showed almost the same shape as the SAC type nozzle. There was no differense in spray pattern at the needle full-lift periods.

  • PDF

목적 공력특성 달성을 위한 플루트 노즐 전산설계 (COMPUTATIONAL DESIGN OF A FLUTED NOZZLE FOR ACHIEVING TARGET AERODYNAMIC PERFORMANCE)

  • 강영진;양영록;황의창;명노신;조태환
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2011
  • As a preliminary design study to achieve target aerodynamic performance, this work was conducted on an original nozzle with 9 flutes in order to design a fluted nozzle with 12 flutes. The thrust and rolling moment of the nozzle with 12 flutes were analyzed using a CFD code according to the depth and rotation angle of the flutes. Based on this, a fluted nozzle with 12 flutes was optimized to yield the same thrust as that of the original nozzle with 9 flutes. The response surface method was applied for shape optimization of the fluted nozzle and design variables were selected to determine the depth angle and rotation angle of the flutes. An optimized shape that led to a thrust as strong as that of the original nozzle was obtained.

S-형 노즐 형상의 중심선 형태에 따른 차폐율과 추력 성능 해석 (Shield Ratio and Thrust Performance Analysis According to The S-Type Nozzle of The Centerline Shape)

  • 진준엽;박용석;김재원;이창욱
    • 한국추진공학회지
    • /
    • 제25권3호
    • /
    • pp.42-55
    • /
    • 2021
  • 본 연구에서는 중심선 방정식 선정에 따른 노즐 성능 영향성을 확인하고자 하였다. 곡선 방정식과 설계 형상 파라미터를 활용하여 S-형 노즐 3조와 Double S-형 노즐 3조를 설계하였고 노즐 차폐 성능은 차폐율 정의를 이용하여 평가하였다. 그리고 내부 유동을 분석하기 위해 속도 분포도와 압력분포도로 특성을 연구하였고, 노즐 성능 계수로는 총 추력 비(f)와 노즐 단열 효율계수(η)를 통해 노즐의 성능을 평가하였다. 중심선에 따른 S-형 노즐의 성능 영향성을 분석한 결과 출구에서 급격한 곡률 변화가 있는 중심선은 노즐 성능이 우수한 반면 차폐율이 낮은 특징이 있다. 반면에 입구에서 급격한 곡률 변화가 있는 중심선은 노즐 성능이 낮아지고 차폐율이 높은 특징이 있다. Double S-형 노즐은 첫 번째 곡률에서 완만한 특징을 보이는 중심선을 사용하는 것이 노즐 성능과 차폐율이 우수하였다.

3차원 초음속 노즐 형상 변수에 따른 부분입사형 터빈 성능 특성에 관한 수치적 연구 (A Numerical Analysis of Partial Admission Turbine's Performance for Design Parameters of 3D Supersonic Nozzle)

  • 신봉근;곽영재;김귀순;김진한
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.34-39
    • /
    • 2005
  • 본 논문에서는 3차원 초음속 노즐 형상 변수에 따른 부분입사형 터빈의 유동 및 성능 특성을 알아보기 위하여 3차원 노즐 형상 변수를 노즐 모양 및 노즐 출구 단면 형상으로 설정하여 전산해석을 실시하였다. 먼저 노즐 모양에 따른 유동 및 성능 특성을 비교해 본 결과, 사각형 노즐이 원형 노즐보다 축방향 간극내에서 발생하는 전압력 손실이 적었으며, 이로 인하여 파워가 약 1.5% 증가하였다. 다음으로 사각형 노즐출구단면의 면적에 따른 유동 및 성능 특성을 비교해 본 결과, 노즐 출구 단면과 로터의 hub/tip 사이의 간극과 노즐간의 간격이 터빈 성능에 크게 영향을 줌을 확인할 수 있었다.

  • PDF

TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (I) - 벤투리노즐의 설계 및 성능분석 - (A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (Ⅰ) - Design and Performance Analysis of Venturi Nozzle -)

  • 함효식;서지석;최윤환;이연원;조상명
    • Journal of Welding and Joining
    • /
    • 제29권3호
    • /
    • pp.51-57
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was designed by using the Venturi meter and compared velocity, pressure, arc shape in the flat position with existing CP-nozzle. As a result, Venturi-type nozzle's maximum velocity and pressure was improved at the same flow rate. Also heat input was increased by the arc contraction in the flat position.

이중판 노즐형 지지격자 스프링의 지지 강성감소를 위한 형상 개선 (Shape Modification for Decreasing the Spring Stiffness of Double-plated Nozzle Type Spacer Grid Spring)

  • 강흥석;송기남;이재호;이강희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.400-405
    • /
    • 2001
  • Nozzle of the double-plated grid plays the role of the spring to support a fuel rod as well as to provide the coolant path in grid. The nozzle was known to be necessary to reduce the spring stiffness for supporting performance. In this study the contact analysis between the fuel rod and the nozzle type spacer grid was performed by using ABAQUS standard to propose the preferable shape in tenn of spring performance. Two small cuts at the upper and lower part of the nozzle appeared to have a minor effect in decreasing the nozzle stiffness. A long slot at the center of the nozzle was turned out not only to decrease the spring constant as desired but also to increase the elastic displacement.

  • PDF

ADJOINT METHOD FOR CONTROLLED CAVITATION INVERSE NOZZLE DESIGN

  • Petropoulou, S.;Gavaises, M.;Theodorakakos, A.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.283-288
    • /
    • 2006
  • A mathematical methodology is proposed for designing nozzle hole shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an adjoint algorithm. The adjoint formulation for the N-S equations is presented while variation of the turbulence viscosity is not taken into account during the geometry modifications. The sensitivities are calculated in a mode independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localized region at the hole inlet producing cavitation, is parameterised using its radius of curvature, while a cost function is formulated to eliminate the negative pressures present at this location. Sensitivity derivatives are used to assess the dependence of the localized region on the minimum pressure, and to drive the geometry to the targeted shape. The results show that the computer model can provide nozzle hole entry shapes that produce predefined flow characteristics, and thus can be used as an inverse design tool for nozzle hole cavitation control.

노즐 형상에 따른 Effervescent 이유체 노즐의 분무특성 (Atomization Characteristics of Effervescent Twin-fluid Nozzle with Different Nozzle Shapes)

  • 이상지;홍정구
    • 한국분무공학회지
    • /
    • 제22권3호
    • /
    • pp.146-152
    • /
    • 2017
  • An experimental study was carried out to investigate the spray characteristics of non-circular effervescent twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and circular nozzle (C) were used. Three types of aerorators with hole diameters of 1.2, 1.7 and 2.1 mm were used. Each aerorator has a total of 12 holes. It is defined by area ratio which is ratio of exit orifice area and aerator hole area. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzles. The discharge coefficients of the three kinds of nozzles were compared with the used in plain orifice's equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 3 times larger. In addition, empirical formula based on ALR, which is the largest variable in Jedelsky's equation, was derived. The droplet sizes(SMD) were found to be smaller in the non-circular shape than in the circular shape, which is concluded to be caused by the difference of the discharge coefficients.

단순 와류 분무 노즐에서 분사되는 중공 원추형 액막의 분무각 (Spray Angle of Hollow Cone Liquid Sheet Discharged from Simplex Swirl Spray Nozzle)

  • 고광웅;이상용
    • 한국분무공학회지
    • /
    • 제7권4호
    • /
    • pp.1-8
    • /
    • 2002
  • This paper investigates the spray angle and the outline shape of the liquid sheet discharged from a simplex swirl nozzle. A theoretical model was proposed and the corresponding experimental data were presented for comparison. Axial and tangential velocities and thickness of the liquid sheet at the nozzle exit were also predicted. The liquid sheet thickness at nozzle exit, as well as the discharge coefficient, turned out to be a sole function of the swirl Reynolds number. However, the axial and tangential velocities at nozzle exit and the spray angle could not be expressed only with the swirl Reynolds number. The predicted outline shape and spray angle of the liquid sheet agreed reasonably with the measured data.

  • PDF

에어제트직기 주 노즐내 천음속 유동의 수치 해석적 연구 (A Numerical Analysis of Transonic Flows in an Axisymmetric Main Nozzle of Air-Jet Loom)

  • 오태훈;김상덕;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.168-173
    • /
    • 1998
  • A numerical analysis of axisymetric backward facing step main nozzle flow in air jet loom has been accomplished. To obtain basic design data for an optimum main nozzle for an air-jet loom and to predict the transonic/supersonic flow, a characteristic based upwind flux difference splitting compressible Navier-Stokes method has been used. The wall static pressure of the main nozzle and the flow velocity changes in the nozzle tube were analyzed by changing air tank pressures and acceleration tube lengths. The flow inside the nozzle experiences double choking one at the needle tip and the other at the acceleration tube exit at tank pressures over $4kg_f/cm^2$. The tank pressure $P_t$ leading to the critical condition depends on the acceleration tube length; i.e, $P_t$ is higher for longer acceleration tubes. The $P_t$ value required to bring the acceleration tube exit to the critical condition is nearly constant regardless of acceleration tube length. The round needle tip shape might lead to less total pressure loss when compared with step shape.

  • PDF