• Title/Summary/Keyword: S-R latch

Search Result 6, Processing Time 0.017 seconds

IGBT Mesh-Topology Modeling And Its Application To Latch-Up Performance

  • Zhang H.;Duan F.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.22-25
    • /
    • 2001
  • A new mesh-topology model of IGBT is presented. It can be applied to the research of IGBT's static and dynamic latch-up (du/dt latch-up, overheat latch-up, overload latch-up, overvoltage latch-up) as well as the switching on-off behavior of the device. The overcurrent latch-up is analyzed.

  • PDF

Design of 6bit CMOS A/D Converter with Simplified S-R latch (단순화된 S-R 래치를 이용한 6비트 CMOS 플래쉬 A/D 변환기 설계)

  • Son, Young-Jun;Kim, Won;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.963-969
    • /
    • 2008
  • This paper presents 6bit 100MHz Interpolation Flash Analog-to-Digital Converter, which can be applied to the Receiver of Wireless Tele-communication System. The 6bit 100MHz Flash Analog-to-Digital Converter simplifies and integrates S-R latch which multiplies as the resolution increases. Whereas the conventional NAND based S-R latch needed eight MOS transistors, this Converter was designed with only six, which makes the Dynamic Power Dissipation of the A/D Converter reduced up to 12.5%. The designed A/D Converter went through $0.18{\mu}m$ CMOS n-well 1-poly 6-metal process to be a final product, and the final product has shown 282mW of power dissipation with 1.8V of Supply Voltage, 100MHz of conversion rate. And 35.027dBc, 31.253dB SFDR and 4.8bits, 4.2bits ENOB with 12.5MHz, 50MHz of each input frequency.

A $3^{rd}$ order 3-bit Sigma-Delta Modulator with Improved DWA Structure (개선된 DWA 구조를 갖는 3차 3-비트 SC Sigma-Delta Modulator)

  • Kim, Dong-Gyun;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.18-24
    • /
    • 2011
  • In multibit Sigma-Delta Modulator, one of the DEM(Dynamic Element Matching) techniques which is DWA(Data Weighted Averaging) is widely used to get rid of non-linearity caused by mismatching of capacitor that is unit element of feedback DAC. In this paper, by adjusting clock timing used in existing DWA architecture, 2n Register block used for output was replaced with 2n S-R latch block. As a result of this, MOS Tr. can be reduced and extra clock can also be removed. Moreover, two n-bit Register block used to delay n-bit data code is decreased to one n-bit Register. After designing the 3rd 3-bit SC(Switched Capacitor) Sigma-Delta Modulator by using the proposed DWA architecture, 0.1% of mismatching into unit element in input frequency 20 kHz and sampling frequency 2.56 MHz. As a consequence of the simulation, It was able to get the same resolution as the existing architecture and was able to reduce the number of MOS Tr. by 222.

The DWA Design with Improved Structure by Clock Timing Control (클록 타이밍 조정에 의한 개선된 구조를 가지는 DWA 설계)

  • Kim, Dong-Gyun;Shin, Hong-Gyu;Cho, Seong-Ik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • In multibit Sigma-Delta Modulator, DWA(Data Weighted Averaging) among the DEM(Dynamic Element Matching) techniques was widely used to get rid of non-linearity that caused by mismatching of unit capacitor in feedback DAC path. this paper proposed the improved DWA architecture by adjusting clock timing of the existing DWA architecture. 2n Register block used for output was replaced with 2n S-R latch block. As a result of this, MOS Tr. can be reduced and extra clock can also be removed. Moreover, two n-bit Register block used to delay n-bit data code is decreased to one n-bit Register. In order to confirm characteristics, DWA for the 3-bit output with the proposed DWA architecture was designed on 0.18um process under 1.8V supply. Compared with the existing architecture. It was able to reduce the number of 222 MOS Tr.

A 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC Based on Low-Power Composite Switching (저전력 복합 스위칭 기반의 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC)

  • Shin, Hee-Wook;Jeong, Jong-Min;An, Tai-Ji;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.27-38
    • /
    • 2016
  • This work proposes a 12b 30MS/s 0.18um CMOS SAR ADC based on low-power composite switching with an active die area of $0.16mm^2$. The proposed composite switching employs the conventional $V_{CM}$-based switching and monotonic switching sequences while minimizing the switching power consumption of a DAC and the dynamic offset to constrain a linearity of the SAR ADC. Two equally-divided capacitors topology and the reference scaling are employed to implement the $V_{CM}$-based switching effectively and match an input signal range with a reference voltage range in the proposed C-R hybrid DAC. The techniques also simplify the overall circuits and reduce the total number of unit capacitors up to 64 in the fully differential version of the prototype 12b ADC. Meanwhile, the SAR logic block of the proposed SAR ADC employs a simple latch-type register rather than a D flip-flop-based register not only to improve the speed and stability of the SAR operation but also to reduce the area and power consumption by driving reference switches in the DAC directly without any decoder. The measured DNL and INL of the prototype ADC in a 0.18um CMOS are within 0.85LSB and 2.53LSB, respectively. The ADC shows a maximum SNDR of a 59.33dB and a maximum SFDR of 69.83dB at 30MS/s. The ADC consumes 2.25mW at a 1.8V supply voltage.

A New Design of Power Folding Controller for Deterioration Detection (열화방지형 파워폴딩 제어기 설계에 관한 연구)

  • Kim, Ji-Hyeon;Lee, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.51-58
    • /
    • 2008
  • This paper is a study of a prevention of power folding controller's thermal degradation. Power folding technology has been applied for many fields such as side rear vision mirror of vehicles, windshield wiper, antenna, power window. These controllers have been comprised with traditional DC moors, Switching electronic devices, and relays. But this methods have a limitation to overcome such problems of product reliability, endurance, noise margins. Therefore on this paper, to detect the movement of motor, sensing motor brush noise on a load sensing part has been used and controlling a precise RC timing control minimizes the thermal deterioration of motor. And using MOS FETs as a electronic switching device increases life-time and liability of control circuit. After testing such circuit and control method, repetition of operating time, cut-off time, wide operation voltage, power noise margin ware increased over eleven-fold.