• Title/Summary/Keyword: S-파속도

Search Result 568, Processing Time 0.025 seconds

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF

The Efficient Edge Detection using Genetic Algorithms and Back-Propagation Network (유전자와 역전파 알고리즘을 이용한 효율적인 윤곽선 추출)

  • Park, Chan-Lan;Lee, Woong-Ki
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.3010-3023
    • /
    • 1998
  • GA has a fast convergence speed in searching the one point around optimal value. But it's convergence time increase in searching the region around optimal value because it has no regional searching mechanism. BP has the tendency to converge the local minimum because it has global searching mechanism. To overcome these problems, a method in which a genetic algorithm and a back propagation are applied in turn is proposed in this paper. By using a genetic algorithm, we compute optimal synaptic strength and offset value. And then, these values are fed to the input of the back propagation. This proposed method is superior to each above method in improving the convergence speed.

  • PDF

The S-wave Velocity Structure of Shallow Subsurface Obtained by Continuous Wavelet Transform of Short Period Rayleigh Waves (Continuous Wavelet Transform을 단주기 레일리파에 적용하여 구한 천부지반 S파 속도구조)

  • Jung, Hee-Ok;Lee, Bo-Ra
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.903-913
    • /
    • 2007
  • In this study, the researchers compared the S-wave velocity structures obtained by two kinds of dispersion curves: phase and group dispersions from a tidal flat located in the SW coast of the Korean peninsula. The ${\tau}-p$ stacking method was used for the phase velocity and two different methods (multiple filtering technique: MFT and continuous wavelet transform: CWT) for the phase velocity. It was difficult to separate higher modes from the fundamental mode phase velocities using the ${\tau}-p$ method, whereas the separation of different modes of group velocity were easily achieved by both MFT and CWT. Of the two methods, CWT was found to be more efficient than MFT. The spatial resolutions for the inversion results of the fundamental mode for both phase and group velocities were good for only a very shallow depth of ${\sim}1.5m$. On the other hand, the spatial resolutions were good up to ${\sim}4m$ when both the fundamental and the 1st higher mode poop velocities obtained by CWT were used for S-wave inversion. This implies that the 1st higher mode Rayleigh waves contain more information on the S-wave velocity in deeper subsurface. The researchers applied the CWT method to obtain the fundamental and the 1st higher mode poop velocities of the S-wave velocity structure of a tidal flat located in SW coast of the Korean peninsula. Thea the S-wave velocity structures were compared with the borehole description of the study area.

Numerical Verification of HWAW Method in the Near Field (근거리장에서 HWAW 기법의 수치해석적 검증)

  • Bang, Eun-Seok;Park, Hyung-Choon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.5-17
    • /
    • 2007
  • Various field setup and filtering criteria have been suggested to avoid the near field effects in surface wave methods. Unlike other surface wave methods HWAW method uses the near field component positively. It is possible by using maximum energy point based on time-frequency map and inversion method to consider receiver locations from the source point and body wave component. To verify the HWAW method in the near field numerical study was performed and the wave propagation in the stratified soil media was simulated due to a surface point load. All of five representative soil models were used. The experimental dispersion curves, determined by HWAW method at the various receiver distances in the region of near field, all coincided well with the theoretical dispersion curves determined by 3D forward modeling (Kausel's method). Consequently, it was considered that the HWAW method can provide reliable $V_s$ profiles effectively in the near field.

Prediction of Shear Wave Velocity on Sand Using Standard Penetration Test Results : Application of Artificial Neural Network Model (표준관입시험결과를 이용한 사질토 지반의 전단파속도 예측 : 인공신경망 모델의 적용)

  • Kim, Bum-Joo;Ho, Joon-Ki;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.47-54
    • /
    • 2014
  • Although shear wave velocity ($V_s$) is an important design factor in seismic design, the measurement is not usually made in typical field investigation due to time and economic limitations. In the present study, an investigation was made to predict sand $V_s$ based on the standard penetration test (SPT) results by using artificial neural network (ANN) model. A total of 650 dataset composed of SPT-N value ($N_{60}$), water content, fine content, specific gravity for input data and $V_s$ for output data was used to build and train the ANN model. The sensitivity analysis was then performed for the trained ANN to examine the effect of the input variables on the $V_s$. Also, the ANN model was compared with seven existing empirical models on the performance. The sensitivity analysis results revealed that the effect of the SPT-N value on $V_s$ is significantly greater compared to other input variables. Also, when compared with the empirical models using Nash-Sutcliffe Model Efficiency Coefficient (NSE) and Root Mean Square Error (RMSE), the ANN model was found to exhibit the highest prediction capability.

Determination of Density of Saturated Sand Considering Particle-fluid Interaction During Earthquake (입자-유체 상호거동을 고려한 지진시 포화 모래지반의 밀도 결정)

  • Kim, Hyun-Uk;Lee, Sei-Hyun;Youn, Jun-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.41-48
    • /
    • 2022
  • The mass density of the medium (ρ) used to calculate the maximum shear modulus (Gmax) of the saturated ground based on the shear wave velocity is unclear. Therefore, to determine the mass density, a verification formula and five scenarios were established. Laboratory tests were conducted, and the obtained results were compared. The mass density of the medium was assumed to be saturated (ρsat), wet (ρt), dry (ρdry), and submerged conditions (ρsub), and the Vs ratios of saturated to dry condition were obtained from each case. Assuming the saturated density (ρsat), the Vs ratio was consistent with the value from the resonant column test (RCT) results, and the value from the bender element test results was consistent with the wet density assumption (ρt). Considering the frequency range of earthquakes, it is concluded that applying the saturated density (ρsat) is reasonable as in the RCT results.

Analysis on Relation of S-wave Velocity and N Value for Stratums in Chungcheong Buk-do (충청지역 지층별 전단파속도와 N값의 상관관계 분석)

  • Do, Jongnam;Hwang, Piljae;Chung, Sungrae;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.13-22
    • /
    • 2011
  • In this study, features of correlation between S-velocity and N value are derived from 9 suspension PS layers in Chungcheong Buk-do. S-velocity to be measured on Chungcheong Buk-do is classified into 5 as conditions of stratum that are ; cohesive soil layer, sandy soil layer, gravel layer, weathering soil layer, weathered rock layer. Each correlation formulas between N value by SPT and S-velocity is proposed from these classifications. And correlation formula for whole soil body except weathered rock layer also is proposed for reference. Corelation formulas developed this study formed square expression considering existing formulas produced internationally. Strength parameter converted to linear if N value is more than 50. Features of proposed formula which came up with comparative analysis of international result of cohesive soil layer and sandy soil layer and gravel layer show similar to existing ones. But there is deference that result of correlation formula for weathered rock layer is a little smaller than domestic formula's one. Because correlations of weathered rock layer above the N value of 50 is converted into a linear formation.

Evaluation on Compression Wave Velocities and Moduli of Gyeongju Compacted Bentonite (경주 압축 벤토나이트의 압축파속도와 탄성계수 산정 연구)

  • Balagosa, Jebie;Yoon, Seok;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.41-50
    • /
    • 2019
  • Gyeongju bentonite is a buffer material primarily considered in Korea and it is highly compacted as a part of an engineered barrier system (EBS) of high-level radioactive waste repository. The compacted bentonite undergoes swelling stress by groundwater penetration and thermal stress by decay heat from a canister. Therefore, the mechanical properties of the compacted bentonite buffer material is crucial for the performance assessment of EBS. This paper aims to evaluate deformation properties of Gyeongju compacted bentonite using seismic methods. Two sets of compacted bentonite specimens were prepared having dry densities of $1.59g/cm^3$ and $1.75g/cm^3$ with water contents of 10.6% and 8.7%. Free-free resonant column tests were performed to measure constrained and unconstrained compression wave velocities. With the measured wave velocities, Young's modulus ($E_{max}$) and constrained modulus ($M_{max}$), material damping ratio ($D_{min}$), and Poisson's ratio at small strain were determined. As results, this paper evaluates the deformation properties of Gyeongju compacted bentonite and compares them with the results of previous researches.

An alternative Scheme of Carrier Frequency Synchronization for DVB-S2 Systems (DVB-S2 시스템을 위한 견고한 반송파 동기 복구부 설계에 관한 연구)

  • Oh, Jong-Gyu;Kim, Joon-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.91-94
    • /
    • 2009
  • 현재 여러 나라에서 유럽의 위성 전송 시스템인 DVB-S 표준을 적용한 위성방송이 실시되고 있다. 또한 HDTV와 같은 광대역 방송 서비스, 인터넷 서비스 제공을 위한 효율적인 위성링크 등의 필요성으로 인해 2세대 위성방송 표준인 DVB-S2 (Digital Video Broadcasting via stellite) 표준이 제정되었다. DVB-S2 수신기의 반송파 동기부는 대부분의 상용 DVB-S2 수신기에 사용되는 상용 부품으로 인한 상당히 큰 초기 반송파 주파수 오차(심볼속도 대비 20%)를 정확하게 추정하고 복구해야만 한다. 이런 이유로, 기존의 DVB-S2 수신기의 반송파 주파수 복구부는 많은 연산량을 필요로 하고 복잡한 하드웨어 구조를 가진다. 이에 본 논문에서는 기존의 반송파 주파수 복구부에 비해 성능의 열화가 없고, 간단한 구조를 가지는 견고한 반송파 주파수 복구부 방식을 제안하였다.

  • PDF

Analysis of Weathered State on a Halo Stone Buddha, Unju Temple of Hwasun, Korea Using Low Frequency Flaw Detector (저주파 결함 탐지기를 활용한 화순 운주사 광배석불의 풍화상태 분석)

  • Kang, Seong-Seung;Ko, Chin-Surk;Kim, Cheong-Bin;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.235-246
    • /
    • 2013
  • P-wave velocity was measured by the low frequency flaw detector in order to analyze the weathered state of a halo stone Buddha, Unju temple, Hwasun, Korea. By the results of laboratory tests on a fresh acidic tuff with the same rock of a halo stone Buddha, average absorption, average P-wave velocity, and average uniaxial compressive strength were 5.38%, 4,008 m/s, and 70.1 MPa, respectively. The results correspond to moderately strong rock. Average P-wave velocity of a halo stone Buddha measured by the low frequency flaw detector was 2,257 m/s in the left zone, 3,437 m/s in the right zone, and 2,802 m/s overall. Weathering index of a halo stone Buddha was 0.45 in the left zone, 0.21 in the right zone, and 0.33 overall. Comparing the results of a halo stone Buddha with them of laboratory tests, weathered state of a halo stone Buddha was analyzed highly weathered state in the left zone and moderately weathered state in the right zone. Furthermore, it suggests that the left zone of a halo stone Buddha was affected weathering more than the right one. Overall a halo stone Buddha corresponds to moderately weathered state of weathering degrees. In conclusion, it is considered that low frequency flaw detector may be applicable as a valuable method on analyzing the P-wave velocity of the stone cultural heritage with an irregular surface.