• Title/Summary/Keyword: S-레일 성형

Search Result 18, Processing Time 0.033 seconds

Analysis of Warm Springback Behavior of Mg Sheet for Exterior Part of Mobile Device (모바일기기 외장재 정밀 성형을 위한 마그네슘 판재의 온간 스프링백 특성 분석)

  • Kim, Heung-Gyu;Jeong, Dae-Geun;Choe, Byeong-Hyeon;Im, Tae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.68-69
    • /
    • 2011
  • 마그네슘 판재의 온간 스프링백 거동 예측을 위한 재료 거동 모델을 고찰하였다. V-굽힘 시험에 관한 기존 문헌의 결과와 비교하여 재료 모델의 타당성을 토하였다. 스프링백 거동의 정량화를 위해 온간 S-rail 프레스금형에 의한 성형 시험을 수행하였다. 성형 시험은 다양한 온도, 속도, 성형깊이 조건에서 수행하였으며 시험 결과를 서로 비교하였다. 재료 모델을 사용하여 S-레일 성형에 따른 스프링백 예측을 위한 유한요소해석을 수행하고 그 결과를 시험 측정값과 비교하였다. 이로부터 재료 모델의 한계와 가능성을 고찰하였다.

  • PDF

Evaluation of the Springback Characteristics for Automotive Steel Sheets by the S-Rail Forming Test (S-레일 시험을 통한 자동차용 판재의 스프링백 특성 평가)

  • Kwon, ln-Jae;Rim, Jae-Kyu;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.287-294
    • /
    • 2001
  • This study is aimed to evaluate the springback characteristics of automotive steel sheets through the S-rail forming test and to find the process condition under which springback can be reduced. Die set for the S-rail test has been made according to the dimension of the NUMISHEET '96 benchmark model. Experiment and finite element analysis have been performed on two kinds of automotive steel sheets: mild steel, SPCEN and high strength steel, SPRC. The test results show that the amount of springback is larger on the high strength steel SPRC than on the mild steel SPCEN, and decreases with increasing blank holding force as the case of material flow. And the reduction of friction has the effect of lowering the blank holding force in view of punch force and material flow. It is shown that the strain distribution over the whole specimen and along the specified sections calculated from the finite element analysis coincides with the measured data except local differences.

  • PDF

The study for the forming technology of Automobile Bumper beam using the Tailored Blank of Mash Seam Welding (매쉬심 합체박판을 이용한 자동차 Bumper beam의 성형기술에 관한 연구)

  • Shin W.G.;Lee S.H.;Kim E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1376-1380
    • /
    • 2005
  • In recent automotive industry, vehicle weight can be reduced by one-step forming of tailored blanks welded with two or more sheets of metal blanks. Tailored blank(TB) welding is a production method for blanks involving welding together materials of different quality, thickness, and coating, and has proved popular in fabrication automotive parts. This paper deals with the forming characteristics of mash seam welded tailored blanks. Using these forming characteristics, the bumper beam was developed using the mash seam welded tailored blank with the different thickness. We performed the forming simulation with respect to strain distribution on blank during the stamping of the bumper rail part. Based on these results, we made some stamping tryouts with selected types of blank designs to investigate the formability of tailored blank with different thickness. During the tryouts, we knew that it was important the BHF(Blank Holding Force). We obtained to reducing 10.5% weight and cost with adapting the bumper beam of automotive component using the tailored blank of mash seam welding.

  • PDF

Rigid-Plastic Finite Element Approach to Hydroforming Process and Its Application (하이드로 포밍 성형공정 해석을 위한 강소성 유한요소 프로그램 개발 및 적용)

  • 강범수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.22-28
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit for two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral i is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

Characterization of Carbon Composite Bipolar Plates far Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 탄소 복합체 Bipolar Plates의 기체 투과 특성 연구)

  • Hong Seong Uk;Kim Hyun Seon;Choi Won Seok;Kim Jeong Heon
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.141-146
    • /
    • 2005
  • In this study, carbon composites were prepared using carbon graphite, thermoset resin, and carbon black. Oxygen permeability was measured using the continuous flow gas permeation analyzer as a function of composition and processing conditions. The experimental results showed that the oxygen permeability increased as the carbon black content increased, whereas the oxygen permeability decreased as the pressing time increased. The oxygen permeability was not affected by the processing pressure.

Process Design of Seat Rail in Automobile by the Advanced High Strength Steel of DP780 (DP780 초고장력 강판을 이용한 자동차용 시트레일의 성형공정 설계)

  • Ko, D.C.;An, J.H.;Jang, M.J.;Bae, J.H.;Kim, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2008
  • The control of springback is very important in sheet metal forming since springback affects the dimensional inaccuracy of product. The object of this study is to design the manufacturing process for the improvement of the performance of seat rail by DP780. The influence of process variables such as bend angle and pad force on the springback has been firstly investigated through the comparison between the results of FE-analysis and trial out for initial design based on designer's experience. The process variables of the initial design have been modified in order to improve the dimensional accuracy of seat rail from the prediction of springback by FE-analysis. It was shown from experiment that the improved design satisfied the required specifications such as the dimensional accuracy and the strength of seat rail.