• 제목/요약/키워드: Rutile structure

검색결과 147건 처리시간 0.026초

TiO2 나노 입자의 크기와 결정 구조가 염료감응형 태양전지의 광전 효율에 미치는 영향 (Effect of Particle Size and Structure of TiO2 Semiconductor on Photoelectronic Efficiency of Dye-sensitized Solar Cell)

  • 이현주;박노국;이태진;한기보;강미숙
    • 청정기술
    • /
    • 제19권1호
    • /
    • pp.22-29
    • /
    • 2013
  • 본 연구는 염료감응형 태양전지의 구성요소 중 핵심 소재로 주목받고 있는 티타니아($TiO_2$) 나노입자의 크기와 결정구조에 따른 광전 효율을 비교하고자 하였다. 나노입자의 크기는 용매열법(solvothermal method)을 이용하여 출발 용액의 pH를 조절하고 결정구조의 차이는 솔-젤법에 의해 얻어진 무정형의 티타니아를 온도를 달리하여 소성함으로써 조절되었다. 그 결과, 용매법으로는 8.9, 12.8 그리고 20.2 nm의 크기를 가지는 세 종류의 아나타제 티타니아를, 솔-젤법으로는 세 종류의 아나타제-루타일(anatase-rutile) 혼합결정구조를 가지는 티타니아를 얻었다. 여섯 종류의 샘플 중 20.2 nm 크기의 아나타제 결정구조의 티타니아를 광 전극으로 사용한 염료감응형 태양전지 단위 셀에서 8.6%로 가장 좋은 광전 효율을 얻었다.

탄화수소계 가스센서를 위한 SnO2-TiO2계 후막의 제조 (Fabrication of SnO2-TiO2-based Thick Films for Hydrocarbon Gas Sensors)

  • 정완영;박정은;강봉휘;이덕동
    • 한국세라믹학회지
    • /
    • 제28권9호
    • /
    • pp.721-729
    • /
    • 1991
  • SnO2-TiO2(Pt or Pd), as raw material for hydrocarbon gas sensors, was prepared by a coprecipitation method. The SnO2-TiO2-based thick film gas sensors were made by screen printing technique. The titanium dioxide synthesized was shown to be anatase structure from XRD peaks and was transformed to rutile structure between 700$^{\circ}C$ and 1000$^{\circ}C$. Titanium dioxide in SnO2-TiO2 thick films devices plays a very important role in the enhancement of the sensitivity to CH4 and C4H10. In the case of SnO2-TiO2(Pt) sensors, titanium dioxide that was rutile structure enhanced the sensitivity of the thick film to CH4. Platinum added to the raw powder at coprecipitation (as chloroplatinic acid VI hydrate) improved the gas sensitivity to hydrocarbon gases. Therefore, it is expected that the SnO2-TiO2(Pt) thick film sensors fabricated in this experiment could be put into practical use as LPG (primary component : C4H10 and C3H8) and LNG (primary component : CH4) sensors.

  • PDF

Reactive Magnetron Sputtering법으로 제조된 $TiO_2$의 친수성/소수성 변환 특성 (Hydrophilic/Hydrophobic Conversion of $TiO_2$ Films by Reactive Magnetron Sputtering)

  • 이영철;박용환;안재환;고경현
    • 한국세라믹학회지
    • /
    • 제36권11호
    • /
    • pp.1211-1216
    • /
    • 1999
  • TiO2 thin films were prepared by reactive magnetron sputtering on glass substrate and subjected into investigation about their hydrophilic properties. Varing Ar/O2 ration and post annealing at 50$0^{\circ}C$ for 12h anatase and rutile phases of TiO2 films were obtained. Hydrophilic properties were evaluated by determination of contact angle of water droplet on TiO2 surface. On as-annealed TiO2 films water droplet spreaded widely with ~0$^{\circ}$contact angle. Sonication(60 Hz, 28kHz 40kHz) and following dark room treatments turned these hydrophilic TiO2 films into hydrophobic state. All of hydrophobic films were converted recersibly into their original state after UV illumination. Hydrophobic states of anatase films were saturated after sonication and remain same during dark room treatment. But it was found that the conversion into hydrophobic state of rutile films progressed. further after sonication. Therefore it was concluded that Ti3+/Ti+4 ratio is the key to determine hydrophilicity of TiO2 surface so that different surface structure of polymorphs could lead to unique characteristics.

  • PDF

TiCl$_4$ 수용액에서 침전법에 의한 결정상 TiO$_2$ 초미분체 제조 (Preparation of Crystalline TiO$_2$ Ultafine Powders form Aqueous TiCl$_4$ Solution by Precipitation Method)

  • 김선재;정충환;박순동;권상철;박성
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.325-332
    • /
    • 1998
  • Crystalline TiO2 ultrafine powders were prepared simply by heating and stirring aqueous TiOCl2 solution with {{{{ {Ti }^{4+ } }} concentration of 0.5 M from room temperature to 10$0^{\circ}C$ under 1 atmoshpere. The crystallinity and the particle shape of TiO2 ultrafine powders obtained by simple precipitation method were analyzed us-ing XRD(X-ray diffractometer). SEM(scanning electron microscopy) and TEM(transmission electron mi-croscopy) TiO2 crystalline precipitate with rutile phases is fully formed at the temperatures of up to $65^{\circ}C$ and then TiO2 crystalline precipitate with anatase phase starts to be formed above temperatures $65^{\circ}C$ showing its full formation at 10$0^{\circ}C$ These behaviors of TiO2 crystalline precipitate directly from an aqueous TiOCl2 solution would be caused due to the existence of {{{{ OMICRON ^2+ }} ions from distilled water which oxydize TiOCl2 to TiO2 not hydrolyzing it to Ti(OH)4 Here thermodynamically stable TiO2 rutile phase generally formed at higher temperature is practically precipitated at lower temperatures in this study This may be due to the precipitation by very slow reaction enough to make TiO2 particles allocated into stable rutile structure.

  • PDF

유무기 하이브리드 티타늄 착화합물을 이용한 티타니아의 제조 방법 및 성장 거동에 대한 연구 (A Study on the Preparation and Growth Mechanism of Titanium Dioxide using Organic-Inorganic Hybrid Titanium Complex)

  • 강유빈;최진주;권남훈;김대근;이근재
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.487-492
    • /
    • 2019
  • Titanium dioxide (TiO2) is a typical inorganic material that has an excellent photocatalytic property and a high refractive index. It is used in water/air purifiers, solar cells, white pigments, refractory materials, semiconductors, etc.; its demand is continuously increasing. In this study, anatase and rutile phase titanium dioxide is prepared using hydroxyl and carboxyl; the titanium complex and its mechanism are investigated. As a result of analyzing the phase transition characteristics by a heat treatment temperature using a titanium complex having a hydroxyl group and a carboxyl group, it is confirmed that the material properties were different from each other and that the anatase and rutile phase contents can be controlled. The titanium complexes prepared in this study show different characteristics from the titania-formation temperatures of the known anatase and rutile phases. It is inferred that this is due to the change of electrostatic adsorption behavior due to the complexing function of the oxygen sharing point, which crystals of the TiO6 structure share.

Cl2+CO 혼합가스에 의한 합성루타일 염화반응의 속도론적 연구 (Chlorination Kinetics of Synthetic Rutile with Cl2+CO Gas)

  • 홍성민;이소영;손호상
    • 자원리싸이클링
    • /
    • 제29권3호
    • /
    • pp.3-10
    • /
    • 2020
  • 일메나이트의 선택염화를 통해 제조한 합성루타일을 유동층에서 CO와 Cl2 혼합가스를 이용하여 염화시켜 TiO2의 염화반응 속도에 미치는 반응 온도, 시간, CO가스와 Cl2가스의 분압 비($p_{Cl_2}/p_{CO}$)의 영향에 대하여 조사하였다. $p_{Cl_2}/p_{CO}$가 높을 때 TiCl4의 전환율은 감소하였으며, 화학양론 계산결과와 실험결과를 비교하였을 때 Cl2가스 보다 CO가스의 분압이 더 큰 영향을 미친 것으로 판단되었다. 따라서 실험 결과를 입자의 기공을 고려한 모델에 대입하였을 때 합성 루타일의 염화반응은 화학반응율속으로 결정되었고, 활성화에너지는 53.77 kJ/mol로 계산되었다.

산화티타늄을 이용한 VOCs의 광촉매 반응 (Photocatalytic Reaction of VOCs Using Titanium Oxide)

  • 정수경
    • 한국환경과학회지
    • /
    • 제17권2호
    • /
    • pp.171-176
    • /
    • 2008
  • The VOCs have a direct influence on indoor air pollution, and stimulate respiratory organs and eyes in human body. Also, most of VOCs are a carcinogenic substances and causes to SBS (sickness building syndrome). Therefore, this study was progressed in photocatalysis of VOCs using UV/$TiO_2$ which was a benign process environmentally. The experiments were performed to know photodegradation characteristics as crystalline structure of $TiO_2$ which had anatase, rutile and P-25 (anatase : rutile = 70 : 30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, $H_2O$, and residence time.

열처리에 의한 함수 티타니아의 구조적 변화 (Structural Changes of Hydrous Titania by Heat-Treatment)

  • 최병철;이문호
    • 한국재료학회지
    • /
    • 제4권4호
    • /
    • pp.477-482
    • /
    • 1994
  • 열처리에 따른 함수 티타니아의 구조변화를 X-선 회절, 투과전자현미경, 적외선 흡수 및 라만 분광분석 등을 통하여 조사하였다. 과산화수소와 사염화티타의 혼합용액으로부터 $30^{\circ}C$, pH 9에서 함수 티타니아를 제조하였다. 침전물은 완전하게는 결정화되지 않은 anatase형의 티타니아였다. $700^{\circ}C$까지 열처리온도가 증가함에 따라 anatase의 결정성은 증가하였으며, 입성자은 높은 온도에서 일어났다. $700^{\circ}C$에서 anatase로부터 rutile형이 생성되었다.

  • PDF

화염법으로 제조된 TiO2 나노분말의 결정구조에 미치는 화염가스 유량의 영향 (Effect of the Flow Rate of Flame Gases on the Crystal Structure of TiO2 Nanopowder Synthesized by Flame Method)

  • 지현석;안재평;허무영;박종구
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.448-455
    • /
    • 2003
  • $TiO_2$ nanopowder has been synthesized by means of the flame method using a precursor of titanium tetraisopropoxide (TTIP, Ti$(OC_3H_7)_4)$. In order to clarify the effect of cooling rate of hot flame on the formation of $TiO_2$ crystalline phases, the flame was controlled by varying the mixing ratio and the flow rate of gases. Anatase phase was predominantly synthesized under the condition having the steep cooling gradient in flame, while a slow cooling gradient enabled to form almost rutile $TiO_2$ nanopowder of above 95%.

De-NOx Characteristics of V2O5 SCR according to the Ratio of TiO2 Crystal Structures

  • Seo, Choong-Kil;Bae, Jaeyoung
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.26-32
    • /
    • 2015
  • The purpose of this study is to investigate the de-NOx performance characteristics according to the $TiO_2$ crystal structures ratio of $V_2O_5$ SCR catalysts. The anatase(100%) SCR catalyst showed the highest desorption peak of 80ppm at about $250^{\circ}C$, and $NH_3$ was not desorbed at $500^{\circ}C$. It can be confirmed that there was many $NH_3$ desorbed at a high temperature among other various crystal structures, which is because the catalyst was more acidized to increase the intensity of acid sites as the content of subacid sulfate ions($NH_2SO_4$) in the rutile phase increases. The anatase/rutile(7%/93%) SCR had the smallest width of de-NOx performance drop according to thermal aging, and had strong durability against thermal aging.