DOI QR코드

DOI QR Code

Chlorination Kinetics of Synthetic Rutile with Cl2+CO Gas

Cl2+CO 혼합가스에 의한 합성루타일 염화반응의 속도론적 연구

  • Hong, Sung-Min (School of Materials Science and Engineering, Kyungpook National University) ;
  • Lee, So-Yeong (School of Materials Science and Engineering, Kyungpook National University) ;
  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • 홍성민 (경북대학교 신소재공학부) ;
  • 이소영 (경북대학교 신소재공학부) ;
  • 손호상 (경북대학교 신소재공학부)
  • Received : 2020.03.25
  • Accepted : 2020.06.02
  • Published : 2020.06.30

Abstract

The chlorination kinetics of synthetic rutile prepared by selective chlorination of ilmenite with Cl2 and CO gas mixture were studied in a fluidized bed. Th e effects of reaction temperature, reaction time, and the ratio of Cl2 and CO partial pressure ($p_{Cl_2}/p_{CO}$) on the conversion rate of TiCl4 were investigated. The conversion rate of TiC4 was low under the high $p_{Cl_2}/p_{CO}$ conditions. Moreover, it was considered that the partial pressure of CO gas was more effective than that of Cl2 gas when comparing the stoichiometric conversion rate and experimental results of high CO partial pressure. Considering the porous structure of particles, the rate controlling step of the chlorination of synthetic rutile was determined to be chemical reaction and the activation energy was calculated as 53.77 kJ/mol.

일메나이트의 선택염화를 통해 제조한 합성루타일을 유동층에서 CO와 Cl2 혼합가스를 이용하여 염화시켜 TiO2의 염화반응 속도에 미치는 반응 온도, 시간, CO가스와 Cl2가스의 분압 비($p_{Cl_2}/p_{CO}$)의 영향에 대하여 조사하였다. $p_{Cl_2}/p_{CO}$가 높을 때 TiCl4의 전환율은 감소하였으며, 화학양론 계산결과와 실험결과를 비교하였을 때 Cl2가스 보다 CO가스의 분압이 더 큰 영향을 미친 것으로 판단되었다. 따라서 실험 결과를 입자의 기공을 고려한 모델에 대입하였을 때 합성 루타일의 염화반응은 화학반응율속으로 결정되었고, 활성화에너지는 53.77 kJ/mol로 계산되었다.

Keywords

References

  1. Housley, K. L., 2007 : The History of Titanium, p. xi, Metal Management Aerospace, Inc. Hartford, USA.
  2. Sohn, H. S. and Jung, J. Y., 2016 : Current Status of Ilmenite Beneficiation Technology for Production of $TiO_2$, J. of Korean Institute of Resources Recycling, 25(5), pp.67-74.
  3. Bendinger, G. M., 2019 : Mineral Commodity Summaries-Titanium Mineral Concentrates, U.S. Geological survey, pp.176-177.
  4. Sohn, H. Y. and Zhou, L., 1999 : The chlorination kinetics of beneficiated ilmenite particles by CO+$Cl_2$ mixtures, Chemical Engineering Journal, 72, pp.37-42. https://doi.org/10.1016/S1385-8947(98)00139-9
  5. Morris, A. J. and Jensen, R. F., 1976 : Fluidized-Bed Chlorination Rates of Australian Rutile, Metall. and Mater. Trans. B, 7B, pp.89-93. https://doi.org/10.1007/BF02652823
  6. Sohn, H. Y., Zhou, L. and Cho, K., 1998 : Intrinsic Kinetics and Mechanism of Rutile Chlorination by CO + $Cl_2$ Mixtures, Ind. Eng. Chem. Res., 37, pp.3800-3805. https://doi.org/10.1021/ie980238k
  7. Moodley, S., 2011 : A study of the chlorination behaviour of various titania feedstocks, pp.112-115, Thesis of master degree, Univ. of the Witwatersrand, Johannesburg.
  8. Lee, S. Y., Park S. H. and Sohn, H. S., 2019 : Removal of Iron from Ilmenite Through Selective Chlorination Using Coke and $Cl_2$ Gas, Korean J. Met. Mater., 57(3), pp.146-153. https://doi.org/10.3365/kjmm.2019.57.3.146
  9. Son, Y. I., Sohn, H. S. and Jung, J. Y., 2018 : The Effects of Reductants on the Behaviors of Fe Selective Chlorination using an Ilmenite Ore, J. of Korean Institute of Resources Recycling, 27(3), pp.30-38. https://doi.org/10.7844/KIRR.2018.27.3.30
  10. Levenspiel, O., 1999 : Chemical Reaction Engineering, pp. 577-580, 3rd Ed., John Wiley & Sons, Inc. New York.
  11. Szekely, J., Evans, J. W., and Sohn, H. Y., 1976 : GAS-SOLID REACTIONS, pp.109-117, 1st Edition, Academic press, Inc. New York.