• Title/Summary/Keyword: Runout distance

Search Result 17, Processing Time 0.02 seconds

The Experimental Study for Variance of Depositation Due to Sediment Volume Concentration of Debris Flow (토석류의 토사체적농도에 따른 퇴적 특성 변화에 관한 실험 연구)

  • Choi, Youngdo;Kim, Sungduk;Lee, Hojin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.15-21
    • /
    • 2022
  • The purpose of this study is to investigate the sedimentation area and runout distance in the downstream when debris flow occurred on a mountain slope through an experimental performance. Super typhoons and torrential rains caused by climate change cause large-scale debris flow disasters in the downstream areas of mountainous areas, mainly where sediments are deposited and flowed downstream. To analyze the characteristics of the sediment deposited downstream, the disposition area and runout distance were investigated through experiments in the case of a straight channel and channel with berm, respectively. As experimental conditions, changes in sediment volume concentration and channel slope, and channel with or without berm, reduction rates in sedimentation area and runout distance were investigated. In the straight channel, the steeper the channel slope and the lower the sedimentation concentration, the sedimentation area and runout distnace were increased. In a channel with berm, the runout distance and sediment area increased as the slope became steeper and the sediment area decreased.

Assessment of Runout Distance of Debris using the Artificial Neural Network (인공신경망을 이용한 사태물질 이동거리 산정)

  • Seo Yong-Seok;Chae Byung-Gon;Kim Won-Young;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.145-154
    • /
    • 2005
  • This study conducted to develop an assessment method of runout distance of debris flow that is a major type of landslides in Korea. In order to accomplish the objectives, this study performed detailed field survey of runout distance and laboratory soil tests using 24 landslides over three pilot sites. Based on the data of the field survey and the laboratory tests, an assessment method of runout distance was suggested using the artificial neural network. The input data for the analysis of artificial neural network are change rate of slope angle, Permeability coefficient of in-situ soil, dry density, void ratio, volume of debris and the measured runout distance. The analyzed results using the artificial neural network show low error rate of inference distributing lower than $10\%$. Some cases have $5\%$ and $2\%$ of error rates of inferences. The results can be thought as excellent teaming rates. However, it is difficult to be accepted as excellent results if it is considered with the results derived using only 24 landslide data. Therefore, more landslide data should be surveyed and analyzed to increase the confidence in the assessment results.

The Experimental Study for Variance of Sediment Volume Concentration of Debris Flow due to Damped Structures (감쇠 구조물에 의한 토석류 토사체적 농도 변화에 관한 실험적 연구)

  • Youngdo Choi;Sungduk Kim;Hojin Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • The purpose of this study is an experimental research to investigate the effectiveness of debris flow reduction structures when a debris flow disaster occurs on a steep slope. The control structure for debris flow took the form of baffle, and the soil deposition area and soil runout distance due to debris flow from the downstream were investigated according to the installation number of baffle and each specification. As the slope of the channel became steeper, the sediment deposition area and runout distance increased, and as the sediment volume concentration decreased, the sediment deposition area and runout distance increased. When the sediment concentration was low, differences appeared depending on the slope of the channel because the debris flow had a high liquid content. Overall, the larger the sediment volume concentration, the greater the decrease in sediment deposition area and soil runout distance. As the number of baffles increases, the soil deposition area and runout decrease, showing that the baffles have the ability to control debris flows. The results of this research will provide good information when installing attenuation or control structures when sediment disasters occur in steep slopes.

A Long-Runout Landslide Triggered by Extreme Rainfall in Gokseong, South Korea on 7 August 2020

  • Nam, Kounghoon;Wang, Fawu;Dai, Zili;Kim, Jongtae;Choo, Chang Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.571-583
    • /
    • 2022
  • On 7 August 2020, a large-scale catastrophic landslide was triggered by extreme rainfall at Osan village, Gokseong County, South Jeolla Province, South Korea. The initiation mechanism of the Gokseong landslide was different from those typical landslides that occurred in South Korea. Despite the relatively low elevation and slope degree, the landslide had a long runout distance of about 640 m over a total vertical distance of 90 m. A detailed field investigation and chemical analysis were conducted to understand the possible mechanisms for the high-speed and long-runout behavior of the landslide. The terrain controlled the motion behavior of the landslide and the seepage was observed at the whole landslide body. The clay-rich soils covered on granite bedrock of the landslide deposition area from the rice paddy field to the landslide crown. The results of this study may provide basic data for further research on the mechanisms for landslide initiation and propagation.

Characteristics of Runout Distance of Debris Flows in Korea (한국 토석류의 이동거리 특성)

  • Choi, Dooyoung;Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.193-201
    • /
    • 2012
  • In the last decade, heavy rainfall induced debris flow events have been remarkably occurred in Korea. Consequently, debris flow is becoming one of the most dangerous natural phenomena in mountainous area. Understanding and correct predicting of the runout distance of debris flow is an essential prerequisite for developing debris flow hazard map and prevention technology. Based on the simple and widely used sled model, in this study, we analyse the net efficiency of debris flows which is a dimensionless constant (=1/R) and defined by the ratio of the horizontal runout distance L from the debris flow source to deposit and the vertical elevation H of the source above the deposit. The analysis of field data observed in total 238 debris flow events occurred from 2002 to 2011 reveals that the representative value of the net efficiency of debris flows in Korea is 4.3. The data observed in Gangwon province where is the most debris flow-prone area in Korea shows that debris flows in Inje area have the runout distance longer than those in Pyongchang and Gangneung. Overall features of the net efficiency of debris flows observed in the central Korea are similar to those in the southern Korea. The estimation based on aerial photographs and available depositional conditions appears to overestimate the net efficiency compared to estimation based on the field observations, which indicates that appropriate depositional conditions need to be developed for debris flows in Korea.

An Analysis of Plastic Deformation Developed During Interference Fitting of Disk Brake Hub Bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.407-411
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit(bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

Movement and Deposition Characteristics of Debris Flow According to Rheological Factors (유동학적 인자에 따른 토석류의 이동 및 퇴적 특성)

  • Lee, Mi-Ji;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.19-27
    • /
    • 2013
  • Most of the landslides induced by rainfall in summer rainy season appear in the type of debris flow. Debris flow gives a lot of economic losses and human casualties due to high moving velocity and volume of debris flow. In order to analyze movement and deposition characteristics of debris flow, numerical analysis using FLO-2D program was conducted with various viscosities and yield stresses. As a result of numerical analysis, velocity and runout distance of debris flow decreased as its viscosity increased due to resisting force between particles of debris flow. Consequently, flow depth of debris flow increased and impact force decreased. Yield stress of debris flow affected its initiation and deposition characteristics. As yield stress increased, runout distance of debris flow decreased and its impact force increased. Based on the results of numerical analysis, it was found that velocity of debris flow mainly depended on viscosity, while deposition characteristics (runout distance, deposition width, deposition area) of debris flow depended on both viscosity and yield stress.

An analysis of plastic deformation occurring by interference fit of disk brake hub bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.238-241
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit (bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

  • PDF

Simulation of Pyroclastic Density Current by Lava Dome Collapse at Jeju Island Using TITAN2D (TITAN2D를 이용한 제주도에서 발생 가능한 용암돔 붕괴에 의한 화쇄류 수치모의)

  • Chang, Cheolwoo;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • In order to determine the runout range of pyroclastic density currents on Jeju island, lava dome collapse on 8 locations of outer rim of Baekrokdam crater were simulated by TITAN2D numerical simulation program. We set parameters as internal friction angle as $30^{\circ}$ and bed friction angle as $20^{\circ}$ to control velocity of currents occurred by lava dome collapse. Then we set the height and radius of lava dome, initial speed of collapse and simulation times. And we carried out numerical simulations for a total of 96 scenarios. The result shows that the maximum runout distance was 13.4 km in case of lava dome collapse. This study can be used database for manufacturing of hazard map to minimize damages caused by pyroclastic density currents occurred on Jeju island.

Model Test to Predict the Runout Distance of Landslide according to Hourly Rainfall (강우강도에 따른 산사태 확산범위 예측을 위한 모형실험)

  • Song, Young-Suk;Chae, Byung-Gon;Kim, Won-Young;Seo, Yong-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.12-19
    • /
    • 2006
  • Landslide model experiments considering hourly rainfall were performed to investigate and predict the run out distance induced by landslides. The model flume and the rainfall simulator were designed and produced. The model flume was designed in consideration of the landslide characteristics of Korea. The landslides in Korea were mainly occurred in the interface between soil layer and rock layer. The rainfall simulator was produced for controlling hourly rainfall ranged from 100mm/hr to 1,000mm/hr. Jumnunjin standard sand as slope soils was placed on the model flume. The model experiments were performed with changing the hourly rainfall ranged from 150mm/hr to 250mm/hr. In this experiments, the inclination of slope was 25o and the relative density of slope soils was 35%. As a result of experiments, the pore water pressure is rapidly increased at landslide occurring time, and the scale of landslide is increased with increasing in hourly rainfall. The spreading range of run out distance is occurred with pan type, and the spreading width and length are rapidly increased in its early stage and slowly increased after early stage. Also, The increasing velocity of run out distance of debris is influenced by hourly rainfall.

  • PDF