• Title/Summary/Keyword: Runoff discharge

Search Result 571, Processing Time 0.027 seconds

Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters (지상인자에 의한 순간단위도 유도와 유출량 예측)

  • 천만복;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

A study on the flood runoff analysis with TANK MODEL (탱크 모델에 의한 홍수(洪水) 유출량(流出量) 해석(解析)에 관(關)한 연구(硏究))

  • Hong, Chang-sun;Choi, Han-kuy
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.95-101
    • /
    • 1983
  • This study aims at the determination of the coefficienties of runoff and infiltration affecting runoff. The rating curve is more available than the peak flood runoff to determine flood control plan of flood control reservoir and the volume of hydroelectric power plant, or to make multipurpose dam. In hydrologic analysis and design, it is necessary to develop relations between precipitation and runoff, possible using some of the factors affecting runoff as parameters. In order to calculate the runoff discharge, the runoff process constituting elements are divided to the surface runoff, the subsurface runoff and the groundwater runoff. By comparing the computed hydrograph with the measured hydrograph, determinned the watershed TANK Model constant Varying the tank model constant for approximating the computed hydrograph to the measured hydrograph.

  • PDF

The NPS Analysis and CSO Management Based on SWMM for Oncheon Basin (SWMM 모형을 이용한 비점오염 분석 및 CSO 관리방안 연구 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun Suk;Son, Jeong Hwa;Jang, Jong Kyung;Shon, Tae Seok;Kang, Dookee;Cho, Dukjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.268-280
    • /
    • 2009
  • Oncheon basin which are located in Busan is divided into 43 basin on the basis of main pipe, constructed with Storm Water Management Model (SWMM). Occurrence situation for Outflow and pollutant loads by long-term continuous rainfall is examined for treatment district and river analysis point of Oncheon basin and a reduction vs effectiveness table for effective CSOs managements is made for each of treatment districts according to each of managements. In case that treatment equipment is located at the discharge point of CSO, treatment efficiency is analysed. It is supposed that treatment equipment have an efficiency on the basis of a concentration and runoff discharge over a critical flow is discharged with it untreated and treating runoff discharge with treatment equipment at each of runoff discharge points and treating it gathered at sewage treatment plant (STP) through trunk sewer is compared for a relative treatment efficiency.

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

Simulation of Field Soil Loss by Artificial Rainfall Simulator - By Varing Rainfall Intensity, Surface Condition and Slope - (인공강우기에 의한 시험포장 토양유실량 모의 - 강우강도, 지표면 및 경사조건 변화 -)

  • Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Seo, Jiyeon;Lee, Jaewoon;Lim, KyoungJae;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.785-791
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as the most cause of muddy water problem among Non-point source (NPS) pollutant, was studied by the analysis of direct runoff, groundwater discharge, and soil water storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared soil as slope increases from 5% to 20%. The direct runoff volume from straw covered surface were much lower than bared surface. The infiltration capacity of straw covered surface increased, because the surface sealing by fine material of soil surface didn't occur due to the straw covering. Under the same rainfall intensity and slope condition, 2.4~8.2 times of sediment yield were occurred from bared surface more than straw covered surface. The volume of infiltration increased due to straw cover and the direct runoff flow decreased with decrease of tractive force in surface. To understand the relationship of the rate of direct runoff, groundwater discharge, and soil water storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, except between the rate of groundwater storage and rainfall intensity.

Assessment of Rainfall Runoff and Flood Inundation in the Mekong River Basin by Using RRI Model

  • Try, Sophal;Lee, Giha;Yu, Wansik;Oeurng, Chantha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.191-191
    • /
    • 2017
  • Floods have become more widespread and frequent among natural disasters and consisted significant losses of lives and properties worldwide. Flood's impacts are threatening socio-economic and people's lives in the Mekong River Basin every year. The objective of this study is to identify the flood hazard areas and inundation depth in the Mekong River Basin. A rainfall-runoff and flood inundation model is necessary to enhance understanding of characteristic of flooding. Rainfall-Runoff-Inundation (RRI) model, a two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously, was applied in this study. HydoSHEDS Topographical data, APPRODITE precipitation, MODIS land use, and river cross section were used as input data for the simulation. The Shuffled Complex Evolution (SCE-UA) global optimization method was integrated with RRI model to calibrate the sensitive parameters. In the present study, we selected flood event in 2000 which was considered as 50-year return period flood in term of discharge volume of 500 km3. The simulated results were compared with observed discharge at the stations along the mainstream and inundation map produced by Dartmouth Flood Observatory and Landsat 7. The results indicated good agreement between observed and simulated discharge with NSE = 0.86 at Stung Treng Station. The model predicted inundation extent with success rate SR = 67.50% and modified success rate MSR = 74.53%. In conclusion, the RRI model was successfully used to simulate rainfall runoff and inundation processes in the large scale Mekong River Basin with a good performance. It is recommended to improve the quality of the input data in order to increase the accuracy of the simulation result.

  • PDF

Urban Hydrologic Monitoring due to Internet Hydrologic Monitoring System (인터넷 수문관측시스템을 이용한 도시수문 모니터링)

  • Seo, Kyu Woo;Kim, Nam Gil;Na, Hyun Woo;Lee, In Rock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1321-1325
    • /
    • 2004
  • The continuous monitoring of the runoff in the small-scaled urban watershed and easily accessible experiment catchment is necessary to investigate the overall status of the development in the urban catchment and the varying aspects of the discharge characteristics due to the urbanization. However, the research on the management and the characteristics of the small-scaled model basin for discharge tests has not been actively performed up to now. This study selects the Dong-Eui university basin, which locates at Gaya-dong in Busan, as the experiment catchment to monitor the discharge rate in the urban watershed. EMS(DEMS, DATA-PCS EMS, mini rain gage & AWS(AWS-DEU, DATA-PCS AWS) monitoring system installed for the collection of hydrological data such as the rainfall and the waterlevel. This experiment catchment is the typical urban catchment and is under development, and it is possible to analyze the varying aspects of the discharge rate during and after the development.

  • PDF

Spatio-temporal dependent errors of radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam;Lee, Dongryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.164-164
    • /
    • 2016
  • Radar rainfall estimates have been widely used in calculating rainfall amount approximately and predicting flood risks. The radar rainfall estimates have a number of error sources such as beam blockage and ground clutter hinder their applications to hydrological flood forecasting. Moreover, it has been reported in paper that those errors are inter-correlated spatially and temporally. Therefore, in the current study, we tested influence about spatio-temporal errors in radar rainfall estimates. Spatio-temporal errors were simulated through a stochastic simulation model, called Multivariate Autoregressive (MAR). For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo. The results indicated that spatio-temporal dependent errors caused much higher variations in peak discharge than spatial dependent errors. To further investigate the effect of the magnitude of time correlation among radar errors, different magnitudes of temporal correlations were employed during the rainfall-runoff simulation. The results indicated that strong correlation caused a higher variation in peak discharge. This concluded that the effects on reducing temporal and spatial correlation must be taken in addition to correcting the biases in radar rainfall estimates. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which was funded by the Korea Institute of Construction Technology.

  • PDF

Estimates of the Water Cycle and River Discharge Change over the Global Land at the End of 21st Century Based on RCP Scenarios of HadGEM2-AO Climate Model (기후모델(HadGEM2-AO)의 대표농도경로(RCP) 시나리오에 따른 21세기 말 육지 물순환 및 대륙별 하천유출량 변화 추정)

  • Kim, Moon-Hyun;Kang, Hyun-Suk;Lee, Johan;Baek, Hee-Jeong;Cho, ChunHo
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.425-441
    • /
    • 2013
  • This study investigates the projections of water cycle, budget and river discharge over land in the world at the end of twenty-first century simulated by atmosphere-ocean climate model of Hadley Centre (HadGEM2-AO) and total runoff integrating pathways (TRIP) based on the RCP scenario. Firstly, to validate the HadGEM2-AO hydrology, the surface water states were evaluated for the present period using precipitation, evaporation, runoff and river discharge. Although this model underestimates the annual precipitation about 0.4 mm $mon^{-1}$, evaporation 3.7 mm $mon^{-1}$, total runoff 1.6 mm $mon^{-1}$ and river discharge 8.6% than observation and reanalysis data, it has good water balance in terms of inflow and outflow at surface. In other words, it indicates the -0.3 mm $mon^{-1}$ of water storage (P-E-R) compared with ERA40 showing -2.4 mm $mon^{-1}$ for the present hydrological climate. At the end of the twenty-first century, annual mean precipitation may decrease in heavy rainfall region, such as northern part of South America, central Africa and eastern of North America, but for increase over the Tropical Western Pacific and East Asian region. Also it can generally increase in high latitudes inland of the Northern Hemisphere. Spatial patterns of annual evaporation and runoff are similar to that of precipitation. And river discharge tends to increase over all continents except for South America including Amazon Basin, due to increased runoff. Overall, HadGEM2-AO prospects that water budget for the future will globally have negative signal (-8.0~-0.3% of change rate) in all RCP scenarios indicating drier phase than the present climate over land.

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • Kim, Gwang-Seob;Sun, Mingdong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF