DOI QR코드

DOI QR Code

Estimates of the Water Cycle and River Discharge Change over the Global Land at the End of 21st Century Based on RCP Scenarios of HadGEM2-AO Climate Model

기후모델(HadGEM2-AO)의 대표농도경로(RCP) 시나리오에 따른 21세기 말 육지 물순환 및 대륙별 하천유출량 변화 추정

  • Kim, Moon-Hyun (Climate Research Lab., National Institute of Meteorological Research, KMA) ;
  • Kang, Hyun-Suk (Climate Research Lab., National Institute of Meteorological Research, KMA) ;
  • Lee, Johan (Climate Research Lab., National Institute of Meteorological Research, KMA) ;
  • Baek, Hee-Jeong (Climate Research Lab., National Institute of Meteorological Research, KMA) ;
  • Cho, ChunHo (Climate Research Lab., National Institute of Meteorological Research, KMA)
  • 김문현 (기상청 국립기상연구소 기후연구과) ;
  • 강현석 (기상청 국립기상연구소 기후연구과) ;
  • 이조한 (기상청 국립기상연구소 기후연구과) ;
  • 백희정 (기상청 국립기상연구소 기후연구과) ;
  • 조천호 (기상청 국립기상연구소 기후연구과)
  • Received : 2013.07.09
  • Accepted : 2013.10.30
  • Published : 2013.12.31

Abstract

This study investigates the projections of water cycle, budget and river discharge over land in the world at the end of twenty-first century simulated by atmosphere-ocean climate model of Hadley Centre (HadGEM2-AO) and total runoff integrating pathways (TRIP) based on the RCP scenario. Firstly, to validate the HadGEM2-AO hydrology, the surface water states were evaluated for the present period using precipitation, evaporation, runoff and river discharge. Although this model underestimates the annual precipitation about 0.4 mm $mon^{-1}$, evaporation 3.7 mm $mon^{-1}$, total runoff 1.6 mm $mon^{-1}$ and river discharge 8.6% than observation and reanalysis data, it has good water balance in terms of inflow and outflow at surface. In other words, it indicates the -0.3 mm $mon^{-1}$ of water storage (P-E-R) compared with ERA40 showing -2.4 mm $mon^{-1}$ for the present hydrological climate. At the end of the twenty-first century, annual mean precipitation may decrease in heavy rainfall region, such as northern part of South America, central Africa and eastern of North America, but for increase over the Tropical Western Pacific and East Asian region. Also it can generally increase in high latitudes inland of the Northern Hemisphere. Spatial patterns of annual evaporation and runoff are similar to that of precipitation. And river discharge tends to increase over all continents except for South America including Amazon Basin, due to increased runoff. Overall, HadGEM2-AO prospects that water budget for the future will globally have negative signal (-8.0~-0.3% of change rate) in all RCP scenarios indicating drier phase than the present climate over land.

Keywords

References

  1. Arnell, N. W., 1999: Climate change and global water resources. Global Environ. Change, 9, 31-49. https://doi.org/10.1016/S0959-3780(99)00017-5
  2. Baek, H. J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under Representative Concentration Pathways. Asia-Pac. J. Atmos. Sci., 49, 603-618. https://doi.org/10.1007/s13143-013-0053-7
  3. Bergstrom, S., and A. Forsman, 1973: Development of a conceptual deterministic rainfall-runoff model. Nordic. Hydrol., 4, 137-170.
  4. Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, J. Reilly, and R. Richels, 2007: Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1a of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington D.C., 154 pp.
  5. Collins, W. J., and Coauthors, 2008: Evaluation of the HadGEM2 model. Hadley Centre Technical Note HCTN 74, 47 pp. [http://www.metoffice.gov.uk/learning/library/publications/science/climate-science].
  6. Coulibaly, P., and Y. B. Dibike, 2004: Downscaling of global climate model outputs for flood frequency analysis in the Saguenay River System. Department of Civil Engineering, McMaster Univ., Hamilton, Project no. s02-15-01.
  7. Cusack, S., J. M. Edwards, and J. M. Crowther, 1999a: Investigating k-distribution methods for parameterizing gaseous absorption in the Hadley Centre climate model. J. Geophys. Res., 104, 2051-2057. https://doi.org/10.1029/1998JD200063
  8. Cusack, S., J. M. Edwards, and R. Kershaw, 1999b: Estimating the subgrid variance of saturation, and its parametrization for use in a GCM cloud scheme. Quart. J. Roy. Meteor. Soc., 125, 3057-3076. https://doi.org/10.1002/qj.49712556013
  9. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modeling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759-1782. https://doi.org/10.1256/qj.04.101
  10. Doll, P. and M. Florke, 2005: Global-scale estimation of diffuse groundwater recharge. Frankfurt Hydrology, 3, Institute of Physical Geography, Frankfurt University, 26 pp.
  11. Dubal, M., N. Wood, and A. Staniforth, 2004: Analysis of parallel versus sequential splittings for time-stepping physical parameterizations. Mon. Wea. Rev., 132, 121-132. https://doi.org/10.1175/1520-0493(2004)131<0121:AOPVSS>2.0.CO;2
  12. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code : Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689-719. https://doi.org/10.1002/qj.49712253107
  13. Essery, R., M. Best, and P. Cox, 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note, 30, 30 pp. [Available online at http://www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/index.html].
  14. Falloon, P., R. Betts, and C. Bunton, 2007: New Global River Rouing Scheme in the Unified Model. Hadley Centre Technical Note 72, 42 pp.
  15. Fekete, B. M., C. J. Vorosmarty, and W. Grabs, 2000: Global composite runoff fields based on observed river discharge and simulated water balances. Global Runoff Data Centre (GRDC) Rep. No. 22, Germany, 39 pp.
  16. Fujino, J., R. Nair, M. Kainuma, T. Masui, and Y. Matsuoka, 2006: Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Energy J., 27, 343-353.
  17. Gordon, C., C. Cooper, C. A. Senior, H. T. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Woo, 2000: The simulation of SST, seaice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dynam., 16, 147-168. https://doi.org/10.1007/s003820050010
  18. Grant, A. L. M., 2001: Cloud-base fluxes in the cumuluscapped boundary layer. Quart. J. Roy. Meteor. Soc., 127, 407-421. https://doi.org/10.1002/qj.49712757209
  19. Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallowcumulus transports. Quart. J. Roy. Meteor. Soc., 125, 1913-1936. https://doi.org/10.1002/qj.49712555802
  20. Gregory, J., 1999: Representation of the radiative effects of convective anvils. Hadley Centre Tech. Note, 7, 20 pp.
  21. Hijioka, Y., Y. Matsuoka, H. Nishimoto, M. Masui, and M. Kainuma, 2008: Global GHG emissions scenarios under GHG concentration stabilization targets. J. Global Environ. Eng., 13, 97-108.
  22. Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP Version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.
  23. IGPO (International Project Office), 1995: Global Soil Wetness Project. Tech. Report of International GEWEX Project, Maryland, USA.
  24. IPCC, 2007: Climate Change 2007: The Physical Scientific Basis, Working group I contribution to the fourth assessment report of the intergovernmental panel on climate change, Summary for Policymakers. Cambridge University Press, Cambridge, UK, 996 pp. (eds.).
  25. Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20293-20310. https://doi.org/10.1029/2000JD000089
  26. Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, NCAR technical note, NCAR/TN-460+STR, 22 pp.
  27. Lawrence, D. M., and J. M. Slingo, 2004: An annual cycle of vegetation in a GCM. Part I: Implementation and impact on evaporation. Clim. Dynam., 22, 87-106. https://doi.org/10.1007/s00382-003-0366-9
  28. Lock, A. P., A. R. Brown, M. R. Brush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part : Scheme description and SCM tests. Mon. Wea. Rev., 128, 3187-3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  29. Oki, T., 1999: The global water cycle. Global Energy and Water Cycles, K. A. Browning and R. J. Gurney Eds., Cambridge University Press, 10-29.
  30. Oki, T., Y. Agata, S. Kanae, T. Saruhashi, D. Yang, and K. Musiake, 2001: Global assessment of current water resources using total runoff integrating pathways, Hydro. Sci. J., 46, 984-996.
  31. Oki, T., and Y. C. Sud, 1998: Design of Total Runoff Integrating Pathways (TRIP) - A Global river channel network. Earth Interactions, 2. [Available online at http://EarthInteractions.org/].
  32. Riahi, K., A. Gruebler, and N. Nakicenovic, 2007: Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast Soc. Change, 74, 887-935. https://doi.org/10.1016/j.techfore.2006.05.026
  33. Roberts, D. L., and A. Jones, 2004: Climate sensitivity to black carbon aerosol from fossil fuel combustion. J. Geophys. Res., 109, D16202, doi:10.1029/2004JD004676.
  34. Roeckner, E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dumenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Report No. 218 of Max Planck Institute for Meteorology in Hamburg, Germany, ISSN 0937-1060.
  35. Servat, E., J. E. Paturel, L. Niel, B. Kouame, J. M. Masson, M. Travalio, and B. Marieu, 1999: De different aspects de la variablilite de la pluviometrie en Afrique del'Ouest et Centrale non Saheliennne. Rev. Sci. Eau., 363-387.
  36. Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435-460. https://doi.org/10.1002/qj.49711649210
  37. Smith, R. N. B., 1993: Experience and developments with the layer cloud and boundary layer mixing schemes in the UK Meteorological Office Unified Model. Proc. ECMWF/GCSS Workshop on Parametrization of the Cloud-Topped Boundary Layer, ECMWF, Reading, England, 319-339.
  38. Smith, R. N. B., D. Gregory, C. A. Wilson, A. C. Bushell, and S. Cusack, 1999: Calculation of saturated specific humidity and largescale cloud. Unified Model Documentation Paper, 29, Met Office, Exeter, United Kingdom, 27 pp.
  39. Smith, S. J., and T. M. L. Wigley, 2006: MultiGas forcing stabilization with minicam. Energy J. Special Issue, 3, 373-392.
  40. Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841-844. https://doi.org/10.1126/science.1115602
  41. Staniforth, A., A. White, N. Wood, J. Thuburn, M. Zerroukat, and E. Cordero, 2003: Joy of UM5.4-Model formulation. Unified Model Documentation Paper, 15, Met Office, Exeter, United Kingdom, 498 pp.
  42. Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor, 8, 758-769. https://doi.org/10.1175/JHM600.1
  43. Van Vuuren, D. P., M. G. J. den Elzen, P. L. Lucas, B. Eickhout, B. J. Strengers, B. van Ruijven, S. Wonink, and R. van Houdt, 2007a: Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, 81, 119-159. https://doi.org/10.1007/s10584-006-9172-9
  44. Van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5-31. https://doi.org/10.1007/s10584-011-0148-z
  45. Van Vuuren, D. P., B. Eickhout, P. L. Lucas, and M. G. J. den Elzen, 2006: Long-term multi-gas scenarios to stabilize radiative forcing - Exploring costs and benefits within an integrated assessment framework. Energy J., 27, 201-233.
  46. Vorosmarty, C. J., P. Green, J. Salisbury, and R. B. Lammers, 2000: Global water resources: vulnerability from climate change and population growth. Science, 289, 284-288. https://doi.org/10.1126/science.289.5477.284
  47. Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607-1636. https://doi.org/10.1002/qj.49712555707
  48. WMO, 1997: Comprehensive Assessment of the Freshwater Resources of the World. Report by the UN, UN Development Programme, UN Environment Programme, FAO, UNESCO, WMO, World Bank, WHO. UN Industrial Development Organization & Stock holm Environment Institute, 59 pp.
  49. Woodage, M., P. Davison, and D. L. Roberts, 2003: Aerosol processes. Unified Model Documentation Paper, 20, Met Office, Exeter, United Kingdom, 30 pp.
  50. Wise, M., K. Calvin, A. Thomson, L. Clarke, B. Bond-Lamberty, R. Sands, S. J. Smith, A. Janetos, and J. Edmonds, 2009: Implications of limiting $CO_2$ concentrations for land use and energy. Science, 324, 1183-1186. https://doi.org/10.1126/science.1168475

Cited by

  1. Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.059
  2. Prediction of future hydrologic variables of Asia using RCP scenario and global hydrology model vol.49, pp.6, 2016, https://doi.org/10.3741/JKWRA.2016.49.6.551