• Title/Summary/Keyword: Running Robot

Search Result 94, Processing Time 0.038 seconds

Experimental Study on Rolling Stability of Quadruped and Hexapedal Water Running Robots (4족과 6족 보행을 하는 수면 주행 로봇의 안정성 실험 연구)

  • Kim, HyunGyu;Kim, Jung Hyun;Seo, ByungHoon;Seo, TaeWon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1023-1029
    • /
    • 2013
  • Water running animals such as basilisk lizards have an advantage of high-speed movement and high power efficiency on water; so researchers in robotic fields have been interested in the water running locomotion. This paper presents prototype-design and experimental study on the fourand six-legged water running robot. Based on the previously proposed quadruped water running robot, we assemble a hexapedal water running robot. The legs of the water running robot are designed based on four-bar parallel link for repeated motion along to pre-defined path. Stability performance of the quadruped and hexapedal water running robot are investigated by experiments on rolling criterion. As a result, hexapedal robot performs better stability than quadruped robot. Based on the hexapedal robot design, we are planning to optimize the position of legs and operating frequency.

Development of Swimming Mechanism and Algorithm for Fish-Type Underwater Robot(1) (물고기형 수중로봇의 유영메커니즘 및 알고리즘 개발(1))

  • Ryuh, Young-Sun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • Generally, underwater vehicle type of propeller shows low efficiency about 50%-55%. However, the efficiency of swimming mechanism of a fish is 60%-70%, more efficient about 20% than screw propellers. Recently, research of underwater vehicle type of fish increase due to its good efficiency and is regarded as a typical bio-mimical robot. In this research, a new algorithm and mechanism that show low energy consumption imitating swimming mechanism of fish proposed increasing speed and running time in field trial.

  • PDF

A Milli-Scale Hexapedal Robot using Planar Linkages (평면기구 메커니즘을 이용한 소형 6족 로봇)

  • Kim, Dong-Sun;Jung, Sun-Pill;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.97-102
    • /
    • 2018
  • A small and lightweight crawling robots have been actively studied thanks to their outstanding mobility and maneuverability. Those robots can navigate into more confined spaces that larger robots are unable to reach or enter such as debris and caves. In this paper, we propose a milli-scale hexapedal robot based on planar linkage design. To make this possible, two necessary conditions for successful crawling are satisfied: thrust force from the ground and aerial phase while running. These conditions are achieved through a newly developed leg design. The robot has a pair of legs and each leg has three feet. Those feet alternatively moves based on 1DOF planar linkage. This linkage is installed at each side of the robot and finally the robot shows the alternating gait and aerial phase during running. As a result, the robot runs with the crawling speed of 0.9 m/s.

The Energy Efficiency of Walking Method for Quadruped Walking Robot (4 족 보행로봇의 보행방법에 대한 에너지효율)

  • Shin, Chang-Rok;Kim, Jang-Seob;Park, Jong-Hyeon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.882-887
    • /
    • 2008
  • In this paper, the dependency of energy efficiency on the walking/running pattern and the walking/running period is analyzed though simulations of walk, trot and gallop. A quadruped animal has its own original features in the walking pattern and the walking period for adaptation to the environment. The robot model used in the simulations has three active joints and one passive spring-loaded joint at each leg, which is based on the actual quadruped robot, HUNTER (Hanyang UNiversity TEtrapod Robot), developed in the lab. Also included is the dependency of energy efficiency on the walking period in trot.

  • PDF

The running experiment of the wheel type mobile robot

  • Sugisaka, Masanori;Aito, Hisashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.520-520
    • /
    • 2000
  • In this paper, it used a soccer robot which needs the important Held of robot technology as the wheel type mobile robot. With the soccer robot, as for the especially important one, "strategy" "the orbit control of the robot", and "the efficiency of the robot" is given. Therefore, it paid attention to " the orbit control of the robot " and it controlled an orbit of the soccer robot using the PID control. the soccer robot using the PID control.

  • PDF

Operational Status Analysis of Robot Education for Elementary 'After school' (초등학교 방과후학교 로봇교실 운영실태 분석)

  • Lee, Tae-Jun;Han, Jeong-Hye
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • Teaching aids Robot Education, through early education and contests, is very commonly known to elementary school students, their parents and teacher. However, not only we do not have complete knowledge of how robot education for after school performs, but also we lack a proper management skills in educating new teachers and running a structured program. Thus, through this research, we would like to identify the problems in teacher's knowledge and how the robot education is running according to provinces, size of cities, public private school, and size of schools and provide proper and most effective way of teaching after school robot class. According to the result of this research of running 'Robot class' in different area, sub-areas and size of schools, there was a meaningful difference and the biggest problem in performance was the class organization. In addition, about the expectation through after school classes, the research showed that the teachers expect lower cost of private education and improvement in creativity the most.

  • PDF

Galloping Algorithm of Quadruped Robots on Irregular Surface (비평탄면에서의 4 족 로봇의 갤로핑 알고리즘)

  • Shin, Chang-Rok;Park, Jong-Hyeon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.888-893
    • /
    • 2008
  • In This paper proposes the control algorithm for quadruped robots on irregularly sloped uneven surface. Body balance is important in stable running locomotion. Since the body balance is determined by the forces applied at the feet during touchdown phase, the ground reaction force is controlled for stable running. To control the forces at each foot, the desired force is generated. The generated desired force is compared with actual contact force, then, the difference between them modifies the foot trajectory. The desired force is generated by combination of the rate change of the angular and linear momentum at flight. Then the rate change of momentum determines each force distribution. The distribution of the force is carried out by fuzzy logic. The computer simulation is carried out with the commercial software RecurDyn$^{(R)}$. Dynamic model simulation program show that the stable running on the irregularly sloped uneven surface are accomplished by the proposed method.

  • PDF

Running Control of Quadruped Robot Based on the Global State and Central Pattern

  • Kim, Chan-Ki;Youm, Young-Il;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.308-313
    • /
    • 2005
  • For a real-time quadruped robot running control, there are many important objectives to consider. In this paper, the running control architecture based on global states, which describe the cyclic target motion, and central pattern is proposed. The main goal of the controller is how the robot can have robustness to an unpredictable environment with reducing calculation burden to generate control inputs. Additional goal is construction of a single framework controller to avoid discontinuities during transition between multi-framework controllers and of a training-free controller. The global state dependent neuron network induces adaptation ability to an environment and makes the training-free controller. The central pattern based approach makes the controller have a single framework, and calculation burden is resolved by extracting dynamic equations from the control loop. In our approach, the model of the quadruped robot is designed using anatomical information of a cat, and simulated in 3D dynamic environment. The simulation results show the proposed single framework controller is robustly performed in an unpredictable sloped terrain without training.

  • PDF

A Study on the Improvement of Driving of Educational Robots with OID Sensors (OID센서로 주행하는 교육용 로봇의 주행 개선을 위한 연구)

  • Song, Hyun-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.549-557
    • /
    • 2021
  • In this research, we will use the existing OID sensor environment for smart robots, which are a type of educational robot, but we would like to propose that the problem of running be handled by a program. Maybe you have driving information We are building a driving test environment focusing on environment, position recognition, route planning, obstacle avoidance and path reset, and it is not the average final error rate, but the time when the error increases The experiment was conducted by a household that catches the moment of recalibration. Through the process, stable running results were obtained compared to the previous experiment. In this research, I think that it will be a development method that can improve the running performance of educational robots equipped with low-cost sensors currently on the market.