• Title/Summary/Keyword: Runge-Kutta procedure

Search Result 30, Processing Time 0.025 seconds

A LOCAL-GLOBAL VERSION OF A STEPSIZE CONTROL FOR RUNGE-KUTTA METHODS

  • Kulikov, G.Yu
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.409-438
    • /
    • 2000
  • In this paper we develop a new procedure to control stepsize for Runge- Kutta methods applied to both ordinary differential equations and semi-explicit index 1 differential-algebraic equation In contrast to the standard approach, the error control mechanism presented here is based on monitoring and controlling both the local and global errors of Runge- Kutta formulas. As a result, Runge-Kutta methods with the local-global stepsize control solve differential of differential-algebraic equations with any prescribe accuracy (up to round-off errors)

Analysis of Orthotropic Spherical Shells under Symmetric Load Using Runge-Kutta Method (Runge-Kutta법을 이용한 축대칭 하중을 받는 직교 이방성 구형쉘의 해석)

  • Kim, Woo-Sik;Kwun, Ik-No;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.115-122
    • /
    • 2002
  • It is often hard to obtain analytical solutions of boundary value problems of shells. Introducing some approximations into the governing equations may allow us to get analytical solutions of boundary value problems. Instead of an analytical procedure, we can apply a numerical method to the governing equations. Since the governing equations of shells of revolution under symmetric load are expressed by ordinary differential equations, a numerical solution of ordinary differential equations is applicable to solve the equations. In this paper, the governing equations of orthotropic spherical shells under symmetric load are derived from the classical theory based on differential geometry, and the analysis is numerically carried out by computer program of Runge-Kutta methods. The numerical results are compared to the solutions of a commercial analysis program, SAP2000, and show good agreement.

  • PDF

A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge (PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

Dynamic Analysis of PSC Bridge for a High-Speed Railway Vehicle Using Improved 38-Degree of Freedom Model (개선된 38자유도 차량모델을 이용한 고속철 PSC교량의 동적거동해석)

  • Oh, Soon-Taek;Sim, Young-Woo;Lee, Dong-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of pre-stressed concrete (PSC) box girder bridges on the Korea high speed railway. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyze accurately and evaluate with in-depth parametric studies for dynamic responses of bridge due to the high speed railway vehicles. Three dimensional frame element is used to model the PSC box girder bridges, simply supported span lengths 40 m. The high-speed railway vehicles (K-TGV) including a locomotive are used as 38-degree of freedom system. Three displacements (vertical, lateral, and longitudinal) as well as three rotational components (pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic analysis by Runge-Kutta method which are able to analyze considering the dynamic impact factors are compared and contrasted. It is proposed as an empirical formula that the impact factors damaged the bridge load-carrying capacities occurs to the bride due to high-speed vehicle.

Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems

  • Bayat, M.;Pakar, I.;Ahmadi, H.R.;Cao, M.;Alavi, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.331-337
    • /
    • 2020
  • This paper proposes a new approximate analytical solution for highly nonlinear vibration of mechanical systems called Hamiltonian Approach (HA) that can be widely use for structural health monitoring systems. The complete procedure of the HA approach is studied, and the precise application of the presented approach is surveyed by two familiar nonlinear partial differential problems. The nonlinear frequency of the considered systems is obtained. The results of the HA are verified with the numerical solution using Runge-Kutta's [RK] algorithm. It is established the only one iteration of the HA leads us to the high accurateness of the solution.

Optimal Control by the Gradient Method (경사법에의한 최적제어)

  • 양흥석;황희융
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.48-52
    • /
    • 1972
  • The application of pontryagin's Maximum Principle to the optimal control eventually leads to the problem of solving the two point boundary value problem. Most of problems have been related to their own special factors, therfore it is very hard to recommend the best method of deriving their optimal solution among various methods, such as iterative Runge Kutta, analog computer, gradient method, finite difference and successive approximation by piece-wise linearization. The gradient method has been applied to the optimal control of two point boundary value problem in the power systems. The most important thing is to set up some objective function of which the initial value is the function of terminal point. The next procedure is to find out any global minimum value from the objective function which is approaching the zero by means of gradient projection. The algorithm required for this approach in the relevant differential equations by use of the Runge Kutta Method for the computation has been established. The usefulness of this approach is also verified by solving some examples in the paper.

  • PDF

The optimal parameter estimation of storage function model based on the dynamic effect (동적효과를 고려한 저류함수모형의 최적 매개변수 결정)

  • Kim Jong-Rae;Kim Joo-Cheal;Jeong Dong-Kook;Kim Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.593-603
    • /
    • 2006
  • The basin response to storm is regarded as nonlinearity inherently. In addition, the consistent nonlinearity of hydrologic system response to rainfall has been very tough and cumbersome to be treated analytically. The thing is that such nonlinear models have been avoided because of computational difficulties in identifying the model parameters from recorded data. The parameters of nonlinear system considered as dynamic effects in the conceptual model are optimized as the sum of errors between the observed and computed runoff is minimized. For obtaining the optimal parameters of functions, the historical data for the Bocheong watershed in the Geum river basin were tested by applying the numerical methods, such as quasi-linearization technique, Runge-Kutta procedure, and pattern-search method. The estimated runoff carried through from the storage function with dynamic effects was compared with the one of 1st-order differential equation model expressing just nonlinearity, and also done with Nash model. It was found that the 2nd-order model yields a better prediction of the hydrograph from each storm than the 1st-order model. However, the 2nd-order model was shown to be equivalent to Nash model when it comes to results. As a result, the parameters of nonlinear 2nd-order differential equation model performed from the present study provided not only a considerable physical meaning but also a applicability to Korean watersheds.

A Dynamic Analysis of PSC Box Bridge Varying Span Lengths for Increased Speeds of KTX (고속철 속도변화에 대한 PSC박스 교량의 경간길이 별 동적해석)

  • Oh, Soon Taek;Lee, Dong Jun;Shim, Young Woo;Yun, Jun Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.204-211
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of bridge during the passage of high speed railway vehicles. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyse accurately and evaluate with in-depth parametric studies for dynamic responses of various bridge span lengths running KTX railway locomotive up to increasing maximum speed(450km/h). Three dimensional frame element is used to model the simply supported pre-stressed concrete (PSC) box bridges for four span lengths(40~25m). Track irregularity employed as a stationary random process from the given spectral density functions and irregularities of both sides of the track are assumed to have high correlation. The high-speed railway vehicle (KTX) is used as 38-degree of freedom system. Three displacements (Vertical, lateral, and longitudinal) as well as three rotational components (Pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic amplification factors are evaluated by the developed procedure under various traveling conditions, such as track irregularity camber, train speed and ballast. The dynamic analysis such as Newmark-${\beta}$ and Runge-Kutta methods which are able to analyse considering the dynamic impact factors are compared and contrasted.

A Three Dimensional Wheelset Dynamic Analysis considering Wheel-rail Two Point Contact (차륜-레일 2점 접촉을 고려한 3차원 윤축 동역학 해석)

  • Kang, Ju-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Wheelset dynamic analysis is a key element to determine the degree of accuracy of railway vehicle dynamics. In this study, a three-dimensional wheelset dynamic analysis is presented in such a way that the precise wheel-rail contact analysis in three-dimension is implemented into the dynamic equations of a wheelset. A numerical procedure that can be used for the analysis of a wheelset dynamics when the wheel-rail two point contact occurs in a cornering maneuver is developed. Numerical solutions of the constraint equations and the dynamics equations of a wheelset are achieved by using Runge-Kutta method. The proposed wheelset dynamic analysis is validated by comparison against results obtained from VI-RAIL analysis.

Combined influence of slip parameter and Reynolds number on Casson nanofluid flowing in stretching cylinder

  • Jalil, Mudassar;Hussain, Muzamal;Khadimallah, Mohamed A.;Iqbal, Waheed;Loukil, Hassen;Mouldi, Abir;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.369-375
    • /
    • 2022
  • Current exertion reports the numerical analysis of boundary layer slip flow of Casson Nano fluid along a permeable cylinder that is stretching in exponential manner. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. Numerical results are attained using a renowned numerical scheme shooting method with Runge-Kutta procedure of 6th-order. Influential role of relevant parameters like Reynolds, suction, Casson fluid and slip parameters on velocity profile is investigated. The effect of influence of slip parameter γ on temperature profile is seen through graph. To ensure the authenticity of numerical procedure, outcomes of some special cases of present work are compared with published work and strong agreement is noticed.