• Title/Summary/Keyword: Run-of-River

Search Result 158, Processing Time 0.03 seconds

A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis (다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구)

  • 김태철;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

Application of SWAT Model on Rivers in Jeju Island (제주도 하천에 대한 SWAT 모형의 적응)

  • Jung, Woo-Yul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1039-1052
    • /
    • 2008
  • The SWAT model developed by the USDA-Agricultural Research service for the prediction of rainfall run-off, sediment, and chemical yields in a basin was applied to Jeju Island watershed to estimate the amount of runoff. The research outcomes revealed that the estimated amount of runoff for the long term on 2 water-sheds showed fairly good performance by the long-term daily runoff simulation. The watershed of Chunmi river located the eastern region in Jeju Island, after calibrations of direct runoff data of 2 surveys, showed the similar values to the existing watershed average runoff rate as 22% of average direct runoff rate for the applied period. The watershed of Oaedo river located the northern region showed $R^2$ of 0.93, RMSE of 14.92 and ME of 0.70 as the result of calibrations by runoff data in the occurrence of 7 rainfalls.

Regional House Prices and the Ripple Effect in the Yangtze River Delta Region

  • Chang, Tengyuan;Deng, Xiaopeng;Tan, Yuting;Zhou, Qianwen
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.62-72
    • /
    • 2017
  • In this study, liner unit root tests and panel unit root tests to the ratio of city to regional house price were applied to examine the ripple effects across 28 cities in the Yangtze River Delta region. Then invert LM unit root tests with two structural breaks for 10 representative cities were conducted. The results showed that there is overwhelming evidence of the existence of ripple effect in the Yangtze River Delta region, while segmentation is restricted to a small group of cities in which there is no long-run relationship with the Yangtze River Delta region average; compared to no- and one-break case, there is overwhelming evidence of a ripple effect with the LM test with two structural breaks. Furthermore, the results of the Granger causality test showed that changes in house prices in Shanghai, Nanjing and Hangzhou have led to changes in house prices in other cities. The findings of this research make certain contributions to the improvements of research system of ripple effect among regional house prices in the Yangtze River Delta Region,and could be referenced by other markets of other cities.

  • PDF

Improvement Measures of Pollutants Unit-Loads Estimation for Paddy Fields (논으로부터 배출되는 영양물질 오염부하량 원단위 산정 방법 개선 방안 검토)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Woo-Young;Joo, Seuk-Hun;Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Soo-Hyung;Kim, Dong-Ho;Chang, Nam-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • Pollutant unit load developed by Ministry of Environment (MOE) in 1995 has been a tool commonly used for water quality management and environmental policy decision. In spite of the convenience of the method in application, the shortcoming of the method has been criticized especially for nonpoint source pollution from paddy field. In this paper the estimation procedures of pollutant unit load from paddy field in the major river basins (Han, Nakdong, Geum, and Youngsan river) were investigated, and some suggestions of improvement measures of the unit-load estimation were made. The investigation showed that the distributions of rainfall, run-off, and run-off ratio, which are the most important factors affecting discharge amount of pollutants, were not similar among river basins. Such differences seemed to result in a greater unit loads estimation at Han river and at Nakdong river watersheds compared to the others. Therefore, it is not likely to be rationale to compare unit load among the watersheds without consideration of such differences. We conclude that estimation of unit-load through an intensive monitoring of pollutant discharge is crucial for better estimation of unit-load. When such an intensive monitoring is not easy due to labor and expense restriction, we suggest that unit-load should be estimated based on the storm-events which is a representative rainfall-runoff event of the area.

Use of Geo-spatial Information System for the Potential Location Analysis of Small Hydropower.

  • Bastola, Shiksha;Lee, Sangheop;Kareem, Kola Yusuff;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.151-151
    • /
    • 2021
  • The alarming climate change impacts are demanding the use of renewable energy sources like never before. Hydropower is one of the most cost-effective and environmental friendly energy technology recognized in the world. Big hydropower projects come up with the requirements of huge investment costs along with environmental impacts, whereas small hydropower(SHP) are considered a best solution for the economical source of energy. SHP, basically Run-of-River (RoR) type plants can be sustainable renewable energy sources and given the nature of perennial rivers flowing from steep gradient and rugged topography, feasibility of such plants is equally high in Nepal. The objective of this study is to determine the primary potential sites for the development of RoR type SHP sites using Geo-spatial Information System(GSIS). The use of GSIS enables precise survey of large area within a short period of time. This study has focused on the determination of locations by establishing defined criterions and methodologies and hence have located multiple locations rather than selecting one best location. The approach is applicable for the rapid initial screening of potential locations and results can facilitate detail feasibility study for the technical and economic analysis of SHP in the basin.

  • PDF

Preference of Physical Microhabitat on the $1^{st}$-class Endangered Species, Gobiobotia naktongensis inhabiting the Gam Stream, Tributary of the Nakdong River

  • Seo, Jin-Won;Kim, Hee-Sung;Yi, Hye-Suk;Jeong, Sun-A
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.495-501
    • /
    • 2009
  • The study was conducted in 2007~2008 in order to understand preference of physical microhabitat on the $1^{st}$-class endangered species, Gobiobotia naktongensis inhabiting the Gam Stream, tributary of Nakdong River. The total number of fish caught from the study sites was 3,671 representing 7 families 24 species. There were 8 Korean endemic species including Odontobutis platycephala, and 2 introduced species (Carassius cuvieri, Micropterus salmoides) were found. According to investigation and analysis of physical microhabitat on Gobiobotia naktongensis caught in the Gam Stream, a total of 57 individuals were found at shallow depth (0.14~0.46 m) and run (0.239~0.585m $sec^{-1}$). As a result of sieve analysis, stream beds consisted of about 1% gravel and 99% sand (83.4% coarse sand, 15.6% find sand). Therefore, Gobiobotia naktongensis seemed to inhabit shallow-run with coarse sand bed than deep-pool microhabitat. The findings indicate preference of physical microhabitat on Gobiobotia naktongensis, and it is important to enhance efficiency of fish conservation and ecological restoration with understanding species-specific characteristics in microhabitat including protected species.

Spatial Heterogeneity and Long-term Changes in Bivalve Anadara broughtoni Population: Influence of River Run-off and Fishery

  • Silina, Alla V.
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.211-219
    • /
    • 2006
  • A comparison was made of population of the economically important cockle Anadara (=Scapharca) broughtoni (Bivalvia, Arcidae) inhabiting different areas of the Razdolnaya River estuary at the head of Amurskii Bay (Peter the Great Gulf, East Sea). Also, changes in cockle population density and structure, as well as in cockle growth rates during the last 20 years were studied. In all years of investigation, the morphometrical parameters and growth rates of cockles were smaller at the sites located close to the River mouth than farther down-estuary. The differences can be attributed to higher concentration of suspended particulate matter, decreased salinity and water temperature, as well as a longer exposure to these unfavorable environmental factors at sites located close to the River mouth, compared to farther sites. For two decades, cockle population density had decreased by almost 30 times at some sites in the River estuary. The main reason for this population decline is commercial over-fishing of the cockle. Besides, for the last 20 years, linear parameters of the cockles in the population decreased approximately by 30% and weight parameters, almost two times. Cockle growth rates also decreased for this period. Evidently, these facts are due to the damaging effect of dredging.

A Study on the Out Flow Characteristics of Non-Point Source Pollution in the Branch River of So-yang Lake (소양호 지류하천의 비점오염원 유출특성에 관한 연구)

  • Choi, Han-Kuy;Choi, Chang-Ho;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.199-205
    • /
    • 2009
  • This study selected Naerin Stream, Inbuk Stream and Buk Stream, branch rivers of Soyang Dam, also area of highland agriculture as test sites and measured flow and water quality, particularly eutrophication factors (BOD, COD, T-N, and T-P) in precipitation season and non precipitation season for a year, 2008. Based on the result, the study examined the change in water quality in relation to flow, and created flow discharged - pollution loads regression line by estimating pollution loads flowed from each branch river. And the study calculated annual pollution discharge loads for unit area and proposed regression equation on it by using regression analysis.

  • PDF

Quantifying the effects of climate variability and human activities on runoff for Vugia - Thu Bon River Basin in Central of Viet Nam

  • Lan, Pham Thi Huong;Thai, Nguyen Canh;Quang, Tran Viet;Long, Ngo Le
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.233-233
    • /
    • 2015
  • Vu Gia - Thu Bon basin is located in central Vietnam between Truong Son mountain range on the border with Lao in the west and the East Sea in the east. The basin occupies about 10,350 km2 or roughly 90% of the Quang Nam Province and includes Da Nang, a very large city with about 876,000 inhabitants. Total annual rainfall ranges from about 2,000 mm in central and downstream areas to more than 4,000 mm in southern mountainous areas. Rainfall during the monsoon season accounts for 65 to 80% of total annual rainfall. The highest amount of rainfall occurs in October and November which accounts for 40 to 50% of the annual rainfall. Rainfall in the dry season represents about 20 to 35% of the total annual rainfall. The low rainfall season usually occurs from February to April, accounting for only 3 to 5% of the total annual rainfall. The mean annual flow volume in the basin is $19.1{\times}109m 3$. Similar to the distribution of rainfall, annual flows are distinguished by two distinct seasons (the flood season and the low-flow season). The flood season commonly starts in the mid-September and ends in early January. Flows during the flood season account for 62 to 69% of the total annual water volume, while flows in the dry season comprise 22 to 38% of total annual run-off. The water volume gauged in November, the highest flow month, accounts for 26 to 31% of the total annual run-off while the driest period is April with flows of 2 to 3% of the total annual run-off. There are some hydropower projects in the Vu Gia - Thu Bon basin as the cascade of Song Bung 2, Song Bung 4, and Song Bung 5, the A Vuong project currently under construction, the Dak Mi 1 and Dak Mi 4 projects on the Khai tributary, and the Song Con project on the Con River. Both the Khai tributary and the Song Con join the Bung River downstream of SB5, although the Dak Mi 4 project involves an inter-basin diversion to Thu Bon. Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Vu Gia - Thu Bon River Basin in the central of Viet Nam were analyzed to investigate changes in annual runoff during the period of 1977-2010. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. The hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  • PDF

An influence of mesohabitat structures (pool, riffle, and run) and land-use pattern on the index of biological integrity in the Geum River watershed

  • Calderon, Martha S.;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Background: Previous studies on the biological integrity on habitat and landuse patterns demonstrated ecological stream health in the view of regional or macrohabitat scale, thus ignored the mesoscale habitat patterns of pool, riffle, and runs in the stream health analysis. The objective of this study was to analyze influences on the mesohabitat structures of pool, riffle, and run reaches on the fish guilds and biological integrity in Geum-River Watershed. Results: The mesohabitat structures of pool, riffle, and run reaches influenced the ecological stream health along with some close relations on the fish trophic and tolerance guilds. The mesoscale components altered chemical water quality such as nutrients (TN, TP) and BOD and these, then, determined the primary productions, based on the sestonic chlorophyll-a. The riffle-reach had good chemical conditions, but the pool-reach had nutrient enrichments. The riffle-reach had a predominance of insectivores, while the pool-reach has a predominance of omnivores. Also, the riffle-reach had high proportions of sensitive fish and insectivore fish, and the pool-reach had high proportions of tolerant species in the community composition. The intermediate fish species in tolerance and omnivorous fish species in the food linkage dominated the community in the watershed, and the sensitive and insectivorous fishes decreased rapidly with a degradation of the water quality. All the habitat patterns were largely determined by the land-use patterns in the watershed. Conclusions: Trophic guilds and tolerance guilds of fish were determined by land-use pattern and these determined the stream health, based on the Index of Biological Integrity. This study remarks the necessity to include additional variables to consider information provided by mesohabitats and land-use distributions within the selected stream stretch. Overall, our data suggest that land-use pattern and mesohabitat distribution are important factors to be considered for the trophic and tolerance fish compositions and chemical gradients as well as ecological stream health in the watershed.