• Title/Summary/Keyword: Run up

Search Result 833, Processing Time 0.025 seconds

A New Design Method of Rubble Mound Structures with Stability and Wave Control Consideration (안정성(安定性)과 파랑제어기능(波浪制御機能)을 고려(考慮)한 사석구조물(捨石構造物)의 새로운 설계법(設計法))

  • Ryu, Cheong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.155-164
    • /
    • 1987
  • A new design method of rubble mound structures that includes the considerations of stability and wave control is proposed. Using the method, design of structures that reduce the wave reflection and run-up and increase the rubble stability is assured under the given wave conditions. The new design formula is developed so that the allowable prcentage of damage and the wave grouping effects on rubble stability are also considered in design. For this a new definition of the mean run-sum is made. Finally, the new method is applied for the design of uniform and composite slope rubble mound structures and the significant advantages are found.

  • PDF

Numerical Simulation of Internal-External Wave Field Interaction in Permeable Coastal Structures (투과성 해안구조물 내-외부 파동장의 수리특성에 관한 순치모의)

  • Cha, Jong-Ho;Yoon, Han-Sam;Ryu, Cheong-Ro;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.18-23
    • /
    • 2008
  • This study investigated interactions between the internal-external wave field of a permeable coastal structure consisting of rubble. The study examined the application criteria of an existing numerical model (CADMAS-SURF V.4.0) and proposed a modified method to provide reasonable results. In particular, the study focused on and emphasized the water surface profiles in front of a structure, wave run-up/run-down on a slope, and internal water level fluctuations due to the drag coefficient and porosity of a rubble mound structure. In conclusion, the result show that when the vertical fluctuations of the internal water levels in permeable coastal structures exhibited high-quality representation. Sane responses can be seen for wave run-up/run-down characteristics on its slopes.

Influence of Joint Distribution of Wave Heights and Periods on Reliability Analysis of Wave Run-up (처오름의 신뢰성 해석에 대한 파고_주기결합분포의 영향)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.178-187
    • /
    • 2005
  • A reliability analysis model f3r studying the influence of joint distribution of wave heights and periods on wave un-up is presented in this paper. From the definition of failure mode related to wave run-up, a reliability function may be formulated which can be considered uncertainties of water level. In particular, the reliability analysis model can be directly taken into account statistical properties and distributions of wave periods by considering wave period in the reliability function to be a random variable. Also, variations of wave height distribution conditioned to mean wave periods can be taken into account correctly. By comparison of results of additional reliability analysis using extreme distributions with those resulted from joint distribution of wave height and periods, it is found that probabilities of failure evaluated by the latter is larger than those by the former. Although the freeboard of sloped-breakwater structures can be determined by extreme distribution based on the long-term measurements, it may be necessary to investigate additionally into wave run-up by using the present reliability analysis model formulated to consider joint distribution of a single storm event. In addition, it may be found that the effect of spectral bandwidth parameter on reliability index may be little, but the effect of wave height distribution conditioned to mean wave periods is straightforward. Therefore, it may be confirmed that effects of wave periods on the probability of failure of wave run-up may be taken into account through the conditional distribution of wave heights. Finally, the probabilities of failure with respect to freeboard of sloped-breakwater structures can be estimated by which the rational determination of crest level of sloped-breakwater structures may be possible.

Impact of Exchange Rate Shocks, Inward FDI and Import on Export Performance: A Cointegration Analysis

  • NGUYEN, Van Chien;DO, Thi Tuyet
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.4
    • /
    • pp.163-171
    • /
    • 2020
  • The study aims to examine the effects of inward every presence of foreign investment, import, and real exchange rate shocks on export performance in Vietnam. This study employs a time-series sample dataset in the period of 2009 - 2018. All data are collected from the General Statistics Office of Ministry of Planning and Investment in Vietnam, World Development Indicator and Ministry of Finance, State Bank of Vietnam. This study employs the Augmented Dickey-Fuller test and the vector error correction model with the analysis of cointegration. The results demonstrate that a higher value of import significantly accelerates export performance in the short run, but insignificantly generates in the long run. When the volume of registered foreign investment goes up, the export performance will predominantly decrease in the both short run and long run. Historically, countries worldwide are more likely to devaluate their currencies in order to support export performance. According to the study, the exchange rate volatility has an effect on the external trade in the long run but no effect in the short run. Finally, Vietnam's export performance converges on its long-run equilibrium by roughly 6.3% with the speed adjustment via a combination of import, every presence of foreign investment, and real exchange rate fluctuations.

Field Survey for 2004 West Asia Tsunami: Andaman and Nocobar Islands (2004년 서아시아 지진해일 현장조사: 안다만-니코바 제도)

  • Cho, Yong-Sik;Sohn, Dae-Hee;Kim, Sung-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.579-582
    • /
    • 2006
  • The main aim of the present study was to document the run-up heights of the West Aisa Tsunami occurred on December 26, 2004 and loss of life due to the tsunami invasion in the Andaman and Nicobar group of Islands, India. An estimated 1,925 number of people have lost their lives and 5,555 people were missing in Andaman and Nicobar Islands. The field survey conducted in 26 sites indicate that Little Andaman passenger jetty area recorded the highest run-up of 17.26m and the inundation of 500m from the sea was largest in Port Blair area.

  • PDF

Two-Dimensional Particle Simulation for Behaviors of Floating Body near Quaywall during Tsunami (지진해일 중 해안안벽 주변의 부유체 거동에 관한 2차원 입자법 시뮬레이션)

  • Park, Ji-In;Park, Jong-Chun;Hwang, Sung-Chul;Heo, Jae-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.12-19
    • /
    • 2014
  • Tsunamis are ocean waves generated by movements of the Earth's crust. Several geophysical events can lead to this kind of catastrophe: earthquakes, landslides, volcanic eruptions, and other mechanisms such as underwater explosions. Most of the damage associated with tsunamis are related to their run-up onto the shoreline. Therefore, effectively predicting the run-up process is an important aspect of any seismic sea wave mitigation effort. In this paper, a numerical simulation of the behaviors of a floating body near a quaywall during a tsunami is conducted by using a particle method. First, a solitary wave traveling over shallow water with a slope is numerically simulated, and the results are compared with experiments and other numerical results. Then, the behaviors of floating bodies with different drafts are investigated numerically.

Reduction of Run-up Height of Vertical Structure using Bottom Topography (해저 지형을 이용한 연직 구조물의 처오름 감소)

  • Jung, Tae-Hwa;King, Gyu-Young;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.436-445
    • /
    • 2007
  • An analytical solution which can be applied to an arbitrarily varying topography is derived by using the continuity and momentum equations. Applying the fact that the solution of the governing equation is expressed as Bessel function in such case that the water depth varies linearly, the present solution is obtained by assuming the water depth as series of constant slope. The present solution is verified by comparing with analytical solution derived previously and investigates the effects of bottom topography to run-up height of vertical structure.

A Study on Wave Run-up Height and Depression Depth around Air-water Interface-piercing Circular Cylinder

  • Koo, Bon-Guk;Park, Dong-Woo;Paik, Kwang-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • In this paper, the wave run-up height and depression depth around air-water interface-piercing circular cylinder have been numerically studied. The Reynolds Averaged Navier-Stokes equations (RANS) and continuity equations are solved with Reynolds Stress model (RSM) and volume of fluid (VOF) method as turbulence model and free surface modeling, respectively. A commercial Computational Fluid Dynamics (CFD) software "Star-CCM+" has been used for the current simulations. Various Froude numbers ranged from 0.2 to 1.6 are used to investigate the change of air-water interface structures around the cylinder and experimental data and theoretical values by Bernoulli are compared. The present results showed a good agreement with other studies. Kelvin waves behind the cylinder were generated and its wave lengths are longer as Froude numbers increase and they have good agreement with theoretical values. And its angles are smaller with the increase of Froude numbers.

Run-up heights of solitary waves on a circular island with asymmetric crest lengths (비대칭 파봉선 길이에 따른 원형섬에서 고립파의 처오름높이)

  • Cho, He Rin;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.647-652
    • /
    • 2017
  • Many islands are scattered around the southern area of the Korean Peninsula and they may be very vulnerable to unexpected tsunami attacks. During the East Japan Tsunami Event occurred on March 11, 2011, many islands located at the southern area were affected by tsunamis. In this study, maximum run-up heights of solitary waves on a circular island with asymmetrical crest lengths investigated by using a numerical model based on the shallow-water theory. The obtained results could be used by local authorities to establish a defense plan against unexpected tsunami invasion.

Effect of Infra-Gravity Waves on Nearshore Morphodynamics in the East Coast : Case Study - Ilsan Beach (장주기 중력외파의 동해안 연안지형변화에 미치는 영향 연구 : 사례연구 - 일산해변)

  • Son, Donghwi;Yoo, Jeseon;Shin, Hyunhwa
    • Ocean and Polar Research
    • /
    • v.40 no.2
    • /
    • pp.87-98
    • /
    • 2018
  • It is widely known that infragravity waves can exert significant influence on wave run-up over beaches. Large run-ups can lead to overwash, flooding and severe coastal erosion. In spite of the importance of infragravity waves in relation to wave run-up and coastal erosion, few studies have been carried out with regard to the impact of infragravity waves on nearshore morphodynamics with respect to eastern beaches in Korea. The purpose of this study is to investigate the importance of infragravity waves in nearshore numerical modelling. For the study, XBeach model was set up to analyze morphodynamics in December 2016, in Ilsan beach which is located in Ilsan-dong, Ulsan Metropolitan City. After validation of the XBeach model, numerical experiments were conducted by using various directional spreading coefficients. As the directional spreading coefficients are increased, the effect of infragravity waves is also enhanced by narrowband frequency. With the increasing effect of infragravity waves, the amount of sediment transport is also increased and an erosion dominant pattern is found in the south part of Ilsan beach and a deposition pattern in the north part of the beach mainly due to the wave incident direction of NNE.