The study examines the play theory based internet rumor process by using simulating tools, Vensim, which offer a new theoretical basis from which to explore complex adaptive social system. Internet rumor is not a simple linear diffusion process, but a complex interaction behavior between the actors of production and diffusion. Rumor actors consist of two type of diffusion, which is rumor mongers and playful mongers. These two type of mongers make the internet rumor as collective system. Playful mongers play strategically to maximize playfulness. Internet rumor as play is consequence of collective framing constituted by dynamic interaction and playfulness. The networking space spreading internet rumor function as a playground which mobilize play rule, ignoring fact based framing. Rumor as paly, even though it turns out to be a false and loses the public attentions rumor sustains the game play function which makes the rumor without natural extinction. The study proves that playful mongers is a main actors in rumor play ground.
Online rumor creates psychological stress and image loss for victims. Prior studies related to online rumor did not consider the online environmental factor, despite the fact that online rumor occurs in the online space. Therefore, this study tried to investigate the influence of online characteristics on online rumor. This study considered perceived anonymity, lack of social presence, and perceived dissemination as online characteristics. We established and demonstrated a research model in which online characteristics affect online rumor behavior through attitude toward online rumor. This study obtained the sample of 201 social network users based on the survey and verified the research model using PLS tool. The results provided that perceived anonymity and perceived dissemination influenced online rumor behavior through attitude toward online rumor. On the other hand, lack of social presence was not significant. The findings of this study provide the fact that an individual's online rumor behavior can be caused by online characteristics. This study suggests that we pay attention to the role of perceived anonymity and perceived dissemination for online rumor behavior.
This paper provides a review of the research on the relationship between consumer rumor and marketing management in general, and rumor's effects on brand in particular. Also corporations' efforts for managing negative rumor were discussed. In the subsequential article, this study analyzes the consumer's perception of the origin of rumors through contents analysis method, and performs ANOVA study in addition to identify if brand assets such as brand loyalty and brand involvement can affect rumor credibility perception significantly. Based on these results, this study considers some implications for brand crisis management and communications. According to the results, a brand rumor can affect both the corresponding brands and competitor's brands at a time and the relationships between existing favorable brand attitude of consumer and rumor credibility are not significant enough.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.12
/
pp.3868-3888
/
2022
A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.
With the rapid development of the Internet and the Mobile Internet, social communication based on the network has become a life style for many people. WeChat is an online social platform, for about one billion users, therefore, it is meaningful to study the spreading and evolution mechanism of the rumor on the WeChat social circle. The Rumor was injected into the WeChat social circle by certain individuals, and the communication and the evolution occur among the nodes within the circle; after the refuting-rumor-information injected into the circle, subsequently,the density of four types of nodes, including the Susceptible, the Latent, the Infective, and the Recovery changes, which results in evolving the WeChat social circle system. In the study, the evolution characteristics of the four node types are analyzed, through construction of the evolution equation. The evolution process of the rumor injection and the refuting-rumor-information injection is simulated through the structure of the virtual social network, and the evolution laws of the four states are depicted by figures. The significant results from this study suggest that the spreading and evolving of the rumors are closely related to the nodes degree on the WeChat social circle.
Diao, Lei;Tang, Zhan;Guo, Xuchao;Bai, Zhao;Lu, Shuhan;Li, Lin
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.10
/
pp.3211-3229
/
2022
To solve the problems existing in the process of Weibo disaster rumor recognition, such as lack of corpus, poor text standardization, difficult to learn semantic information, and simple semantic features of disaster rumor text, this paper takes Sina Weibo as the data source, constructs a dataset for Weibo disaster rumor recognition, and proposes a deep learning model BERT_AT_Stacked LSTM for Weibo disaster rumor recognition. First, add adversarial disturbance to the embedding vector of each word to generate adversarial samples to enhance the features of rumor text, and carry out adversarial training to solve the problem that the text features of disaster rumors are relatively single. Second, the BERT part obtains the word-level semantic information of each Weibo text and generates a hidden vector containing sentence-level feature information. Finally, the hidden complex semantic information of poorly-regulated Weibo texts is learned using a Stacked Long Short-Term Memory (Stacked LSTM) structure. The experimental results show that, compared with other comparative models, the model in this paper has more advantages in recognizing disaster rumors on Weibo, with an F1_Socre of 97.48%, and has been tested on an open general domain dataset, with an F1_Score of 94.59%, indicating that the model has better generalization.
Brand has received much attention from considerable marketing research. When consumers consume product or services, they are exposed to a lot of brand related stimuli. These contain brand personality, brand experience, brand identity, brand communications and so on. A special kind of new crisis occasionally confronting companies' brand management today is the brand related rumor. An important influence on consumers' purchase decision making is the word-of-mouth spread by other consumers and most decisions are influenced by other's recommendations. In light of this influence, firms have reasonable reason to study and understand consumer-to-consumer communication such as brand rumor. The importance of brand rumor to marketers is increasing as the number of internet user and SNS(social network service) site grows. Due to the development of internet technology, people can spread rumors without the limitation of time, space and place. However relatively few studies have been published in marketing journals and little is known about brand rumors in the marketplace. The study of rumor has a long history in all major social science. But very few studies have dealt with the antecedents and consequences of any kind of brand rumor. Rumor has been generally described as a story or statement in general circulation without proper confirmation or certainty as to fact. And it also can be defined as an unconfirmed proposition, passed along from people to people. Rosnow(1991) claimed that rumors were transmitted because people needed to explain ambiguous and uncertain events and talking about them reduced associated anxiety. Especially negative rumors are believed to have the potential to devastate a company's reputation and relations with customers. From the perspective of marketer, negative rumors are considered harmful and extremely difficult to control in general. It is becoming a threat to a company's sustainability and sometimes leads to negative brand image and loss of customers. Thus there is a growing concern that these negative rumors can damage brands' reputations and lead them to financial disaster too. In this study we aimed to distinguish antecedents of brand rumor transmission and investigate the effects of brand rumor characteristics on rumor spread intention. We also found key components in personal acceptance of brand rumor. In contextualist perspective, we tried to unify the traditional psychological and sociological views. In this unified research approach we defined brand rumor's characteristics based on five major variables that had been found to influence the process of rumor spread intention. The five factors of usefulness, source credibility, message credibility, worry, and vividness, encompass multi level elements of brand rumor. We also selected product involvement as a control variable. To perform the empirical research, imaginary Korean 'Kimch' brand and related contamination rumor was created and proposed. Questionnaires were collected from 178 Korean samples. Data were collected from college students who have been experienced the focal product. College students were regarded as good subjects because they have a tendency to express their opinions in detail. PLS(partial least square) method was adopted to analyze the relations between variables in the equation model. The most widely adopted causal modeling method is LISREL. However it is poorly suited to deal with relatively small data samples and can yield not proper solutions in some cases. PLS has been developed to avoid some of these limitations and provide more reliable results. To test the reliability using SPSS 16 s/w, Cronbach alpha was examined and all the values were appropriate showing alpha values between .802 and .953. Subsequently, confirmatory factor analysis was conducted successfully. And structural equation modeling has been used to analyze the research model using smartPLS(ver. 2.0) s/w. Overall, R2 of adoption of rumor is .476 and R2 of intention of rumor transmission is .218. The overall model showed a satisfactory fit. The empirical results can be summarized as follows. According to the results, the variables of brand rumor characteristic such as source credibility, message credibility, worry, and vividness affect argument strength of rumor. And argument strength of rumor also affects rumor intention. On the other hand, the relationship between perceived usefulness and argument strength of rumor is not significant. The moderating effect of product involvement on the relations between argument strength of rumor and rumor W.O.M intention is not supported neither. Consequently this study suggests some managerial and academic implications. We consider some implications for corporate crisis management planning, PR and brand management. This results show marketers that rumor is a critical factor for managing strong brand assets. Also for researchers, brand rumor should become an important thesis of their interests to understand the relationship between consumer and brand. Recently many brand managers and marketers have focused on the short-term view. They just focused on strengthen the positive brand image. According to this study we suggested that effective brand management requires managing negative brand rumors with a long-term view of marketing decisions.
The emergence of online media and their data has enabled data-driven methods to solve challenging and complex tasks such as rumor classification problems. Recently, deep learning based models have been shown as one of the fastest and the most accurate algorithms to solve such problems. These new models, however, either rely on complete data or several days-worth of data, limiting their applicability in real time. In this study, we go beyond this limit and test the possibility of super early rumor detection via recurrent neural networks (RNNs). Our model takes in social media streams as time series input, along with basic meta-information about the rumongers including the follower count and the psycholinguistic traits of rumor content itself. Based on analyzing millions of social media posts on 498 real rumors and 494 non-rumor events, our RNN-based model detected rumors with only 30 initial posts (i.e., within a few hours of rumor circulation) with remarkable F1 score of 0.74. This finding widens the scope of new possibilities for building a fast and efficient rumor detection system.
A good story persuades people to act. The mobilizing power of a story, however, does not necessarily rely on informational fidelity. During political unrests, word-of-mouth can intermix facts with unverified claims and emotional outrage, often transforming reality into convincing rumor stories. This rapid communication article discusses how rumor publics (dis)approve and participate in 2019 Hong Kong Protests. This survey study finds that police injustice and brutality were the predominant themes of the collected rumor stories, although some stories contained mixed views or anti-protest claims. Rumors of police injustice and brutality were associated with less negative attitudes toward the protests, especially when respondents believed the story. The relationship between rumor stories and protest participation was less obvious, except for rumors about an individual protester's whereabout. This study discusses the ways in which rumor is embedded in contentious political processes.
Microblogging services (such as Twitter) are the representative information communication networks during the Web 2.0 era, which have gained remarkable popularity. Weibo has become a popular platform for information dissemination in online social networks due to its large number of users. In this study, a microblog information dissemination model is presented. Related concepts are introduced and analyzed based on the dynamic model of infectious disease, and new influencing factors are proposed to improve the susceptible-infective-removal (SIR) information dissemination model. Correlation analysis is conducted on the existing information dissemination risk and the rumor dissemination model of microblog. In this study, web hyper is used to model rumor dissemination. Finally, the experimental results illustrate the effectiveness of the method in reducing the rumor dissemination of microblogs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.