• Title/Summary/Keyword: Ruminal fermentation characteristics

Search Result 159, Processing Time 0.024 seconds

Broken rice in a fermented total mixed ration improves carcass and marbling quality in fattened beef cattle

  • Kotupan, Salisa;Sommart, Kritapon
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1331-1341
    • /
    • 2021
  • Objective: This study aimed to determine the effects of replacing cassava chips with broken rice in a fermented total mixed ration diet on silage quality, feed intake, ruminal fermentation, growth performance, and carcass characteristics in the final phase of fattening beef cattle. Methods: Eighteen Charolais-Thai native crossbred steers (average initial body weight: 609.4±46 kg; average age 31.6 mo) were subjected to three ad libitum dietary regimes and were maintained in individual pens for 90 d before slaughter. The experimental design was a randomized complete block design by initial age and body weight with six replicates. The dietary regimens used different proportions of broken rice (0%, 16%, and 32% [w/w] of dry matter [DM]) instead of cassava chips in a fermented total mixed ration. All dietary treatments were evaluated for in vitro gas production and tested in in vivo feeding trials. Results: The in vitro experiments indicated that organic matter from broken rice was significantly more digestible than that from a cassava-based diet (p<0.05). Silage quality, nutrient intake, ruminal fermentation characteristics, carcass fat thickness, and marbling score substantially differed among treatments. The ruminal total volatile fatty acids, propionate concentration, dietary protein intake, and digestibility increased linearly (p<0.05) with broken rice, whereas acetate concentration and the acetate:propionate ratio decreased linearly (p<0.05) with broken rice (added up to 32 g/kg DM). Broken rice did not influence plasma metabolite levels or growth performance (p>0.05). However, the marbling score increased, and the carcass characteristics improved with broken rice. Conclusion: Substitution of cassava chips with broken rice in beef cattle diets may improve fattened beef carcass quality because broken rice increases rumen fermentation, fatty acid biosynthesis, and metabolic energy supply.

Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

  • Lee, Shin Ja;Jeong, Jin Suk;Shin, Nyeon Hak;Lee, Su Kyoung;Kim, Hyun Sang;Eom, Jun Sik;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1864-1872
    • /
    • 2019
  • Objective: This study was conducted to evaluate the effects of Ecklonia stolonifera (E. stolonifera) extract addition on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Methods: One cannulated Holstein cow ($450{\pm}30kg$) consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (09:00 and 17:00) at 2% of body weight with free access to water and mineral block were used as rumen fluid donors. In vitro fermentation experiment, with timothy hay as substrate, was conducted for up to 72 h, with E. stolonifera extract added to achieve final concentration 1%, 3%, and 5% on timothy hay basis. Results: Administration of E. stolonifera extract to a ruminant fluid-artificial saliva mixture in vitro increased the total gas production. Unexpectedly, E. stolonifera extracts appeared to increase both methane emissions and hydrogen production, which is contrasts with previous observations with brown algae extracts used under in vitro fermentation conditions. Interestingly, real-time polymerase chain reaction indicated that as compared with the untreated control the ciliate-associated methanogen and Fibrobacter succinogenes populations decreased, whereas the Ruminococcus flavefaciens population increased as a result of E. stolonifera extract supplementation. Conclusion: E. stolonifera showed no detrimental effect on rumen fermentation characteristics and microbial population. Through these results E. stolonifera has potential as a viable feed supplement to ruminants.

Effects of Homolactic Bacterial Inoculant Alone or Combined with an Anionic Surfactant on Fermentation, Aerobic Stability and In situ Ruminal Degradability of Barley Silage

  • Baah, J.;Addah, W.;Okine, E.K.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.369-378
    • /
    • 2011
  • The effect of a homolactic inoculant containing a blend of Lactobacillus plantarum, Pediococcus acidilactici and Enterococcus faecium or, the anionic surfactant, sodium dodecyl sulphate (SDS), alone or in combination on fermentation characteristics, aerobic stability and in situ DM, OM and NDF degradability of barley silage was investigated. Barley (Hordeum vulgare, L.) was harvested (45% DM), chopped and treated with water at 24 ml/kg forage (Control), inoculant at $1.09{\times}10^5$ cfu/g forage (I), SDS at 0.125% (wt/wt) of forage (S) or with the inoculant ($1.09{\times}10^5$ cfu/g) plus SDS (0.125% wt/wt; I+S). The treated forages were ensiled in triplicate mini silos and opened for chemical and microbiological analyses on d 1, 2, 3, 7, 14, 42 and 77. Silage samples from d 77 were opened and aerobically exposed for 7 d. The in situ rumen degradability characteristics of silage DM, OM and NDF were also determined. The terminal concentration of NDF in S and I+S was lower (p<0.001) than in other treatments. Lactate concentration was higher (p<0.001) and the rate and extent of pH decline were greater (p<0.001) in I and I+S than S and Control silages. A homolactic pathway of fermentation in I and I+S was evidenced by reduced (p<0.001) water-soluble carbohydrates concentration, higher lactate (p<0.01), lower acetate (p<0.01) and lower pH values (p<0.001) than in S and Control silages. All silages remained stable over 7 d of exposure to air as indicated by lower temperatures and moulds, and by non-detectable yeast populations. The treated silages had lower DM and OM degradability than in the Control but NDF degradation characteristics of I+S were improved compared to other treatments. It is concluded that the inoculant alone improved the fermentation characteristics whereas the combination of the inoculant with SDS improved both fermentation and NDF degradability of barley silage.

The Nutritive Values and Manufacture of Total Mixed Fermentation Feeds using Green Forage Crops and RiCE-straw (청예 사료작물과 볏짚을 이용한 완전배합발효사료의 제조와 영양적가치)

  • Lee, H.J.;Cho, K.K.;Kim, W.H.;Kim, Hyeon-Seop;Kim, J.S.;Hang, S.H.;Woo, J.H.;Lee, H.G.;Choi, Y.J.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.75-86
    • /
    • 2002
  • Adequate forage amounts in ruminant animal are necessary for proper ruminal function in dairy cow. This study was carried out to determine the effect of total mixed fermentation feeds made by different green forage crops and grain processings on chemical compositions, RFV (relative feed value) and ruminal characteristics in sheep. The experiment was arranged in a split plot design with 4 replications. The main plot consisted of 6 kinds of green forages (corn, grass, rye, rape, alfalfa and oat) and the sub plots three different grain processings such as non-milling, half milling (7mm mesh over), and regular milling (7mm mesh below). And the different TMFFs (total mixed fermentation feeds) were analyzed for chemical composition and fed to 8 ruminally fistulated sheep for ruminal charactics and palatability. RFV, daily feed intake, acetate/propionate ratio of the rape-TMFFs were higher compared with the other treatment. Ruminal content of VFA (volatile fatty acid) of corn-TMFF was highest as 90.19 mmol% and pH of the feed was lowest as 3.82. But, acetic acid, propionic acid and butyric acid were no difference among treatments. In conclusion, the effect of grain proceeding was not appeared but if consider of only RFV, palatability and dry matter disappearance, grade of TMFF was improved in order of rape-, corn-, alfalfa-, grass-, oat- and rye-TMFF.

Effects of Dietary Crude Glycerin Supplementation on Nutrient Digestibility, Ruminal Fermentation, Blood Metabolites, and Nitrogen Balance of Goats

  • Chanjula, P.;Pakdeechanuan, P.;Wattanasit, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.365-374
    • /
    • 2014
  • This experiment was conducted to evaluate the effects of increasing concentrations of crude glycerin (CGLY) in diets on nutrient utilization, ruminal fermentation characteristics, and nitrogen utilization of goats. Four male crossbred (Thai Native${\times}$Anglo Nubian) goats, with an average initial weight of $26{\pm}3.0$ kg, were randomly assigned according to a $4{\times}4$ Latin square design with four 21 days consecutive periods. Treatments diets contained 0%, 5%, 10%, and 20% of dietary DM of CGLY. Based on this experiment, there were no significant differences (p>0.05) among treatment groups regarding DM intake and digestion coefficients of nutrients (DM, OM, CP, EE, NDF, and ADF). Likewise, mean serum glucose, BHBA, and PCV concentrations were not affected (p>0.05) by dietary treatments, whereas serum insulin concentration linearly increased (L, p = 0.002) with increasing the amount of CGLY supplementation. Ruminal pH, $NH_3$-N, and BUN concentration were unchanged by dietary treatments, except for 20% of CGLY, $NH_3$-N, and BUN were lower (p<0.05) than for the diets 10% of CGLY, while the difference between the diets 0%, 5%, and 20% of CGLY were not significant. The amount of N absorption and retention were similar among treatments. Based on this study, CGLY levels up to 20% in total mixed ration could be efficiently utilized for goats and this study elucidates a good approach to exploiting the use of biodiesel production for goat production.

Effect of Dietary Supplementation of Sodium Salt of Isobutyric Acid on Ruminal Fermentation and Nutrient Utilization in a Wheat Straw Based Low Protein Diet Fed to Crossbred Cattle

  • Misra, A.K.;Thakur, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.479-484
    • /
    • 2001
  • The effect of dietary supplementation of sodium salt of isobutyric acid in low protein (10% CP) wheat straw based diet on nutrient utilization and rumen fermentation was studied in ruminally fistulated male crossbred cattle. The study included a 7 day metabolism and a 3 day rumen fermentation trials. The cattle were distributed into two equal groups of 4 each. The animals of control group were fed a basal diet consisting of wheat straw, concentrate mixture and green maize fodder in 40:40:20 proportion whereas branched chain volatile fatty acid (BCFA) supplemented group received a basal diet + isobutyric acid at 0.75 percent of basal diet. The duration of study was 36 days. The feed intake between experimental groups did not differ significantly and the average total DMI (% BW) was 2.01 and $2.28kg\;day^{-1}$ in control and BCFA supplemented diets. The dietary supplementation of BCFA improved (p<0.05) the DM, OM, NDF and cellulose digestibility by 4.46, 6.63, 10.57 and 11.31 per cent over those fed control diet. The total N retention on BCFA supplementation was improved (p<0.01) due to decreased (p<0.05) urinary N excretion. The concentrations of ruminal total N was 37.07 and $34.77mg\;100ml^{-1}$ in control and BCFA fed groups, respectively. Dietary supplementation BCFA significantly (p<0.01) reduced the ruminal ammonia N concentration as compared to control and the mean values ($mg\;100ml^{-1}$) were 13.18 and 9.42 in control and BCFA fed groups. The total VFA concentration was higher (p<0.01) in BCFA supplemented group (101.14 mM) than the control (93.05 mM). Among the VFAs, the molar proportion of acetate was higher (p<0.01) in BCFA supplemented group (71.07 mM) as compared to control (64.98 mM). However, the concentration of propionate and butyrate remained unchanged. Amino acids composition of bacterial hydrolysates was similar in both the groups. Ruminal outflow rate of liquid digesta was higher (p<0.01) in BCFA fed group ($67.56l\;day^{-1}$) than control ($52.73l\;day^{-1}$). It is concluded that the dietary supplementation of Na-salt of isobutyric acid in low protein diet improved the nutrient utilization and ruminal fermentation characteristics.

The Effects of Korean Seaweeds on In vitro Ruminal Fermentation Characteristics and Methane Production (국내 자생 해조류 첨가가 in vitro 반추위 발효 성상 및 메탄 발생량에 미치는 영향)

  • Kim, Byul;Wi, Jisoo;Lee, Yookyung;Kim, Hyunsang;Seong, Pilnam;Lee, Sungdae;Hwang, Ilki;Kim, Hyunchul;Lee, Seongshin
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.3
    • /
    • pp.277-288
    • /
    • 2024
  • The present study was conducted to investigate the effects of seaweeds on in vitro ruminal fermentation characteristics and methane gas production. Five seaweeds (Dictyota dichotoma, DD; Chrysymenia wrightii Yamada, CW; Codium fragile, CF; Sargassum fusiforme, SF; Gracilaria vermiculophylla, GV) were obtained from National Institute of Fisheries Science (NIFS) in South Korea. The ruminal fluids were collected from 3 rumen-cannulated Hanwoo steers (average 12-months-old). The buffered ruminal fluids (50 mL) were incubated with substrates (0.4 g of concentrate and 0.1 g of rice straw in dry matter basis) and seaweeds (5% of substrates) at 39℃ for 24 and 48 hours. The total gas and methane production of all treatments incubated for 24 hours were not affected by the seaweed. However, methane production (mL/g of digested dry matter) in the CW and CF treatments incubated for 48 hours was decreased compared to control (p<0.05). Additionally, the ruminal pH of all treatments incubated for 24 and 48 hours was lower than control (p<0.05). There was no signigicant difference in total VFA concentration at 24 hours of incubation, but it was higher in the CF treatment at 48 hours of incubation (p<0.05). The dry matter digestibility of all treatments incubated for 24 and 48 hours were not affected by the seaweed. In conclusion, Codium fragile reduced in vitro methane production without negative effects on rumen fermentation characteristics.

Effects of Plant Herb Combination Supplementation on Rumen Fermentation and Nutrient Digestibility in Beef Cattle

  • Wanapat, M.;Kang, S.;Khejornsart, P.;Wanapat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1127-1136
    • /
    • 2013
  • Four rumen-fistulated crossbred beef cattle (Brahman native) were randomly assigned according to a $4{\times}4$ Latin square design experiment to be fed plant herb supplements in their concentrate mixture. The treatments were: without herb supplementation (Control), lemongrass meal supplementation at 100 g/d (L), lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d (LP), and lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d with garlic powder 40 g/d (LPG), respectively. Based on the present study, the DMI and apparent digestibility of DM, OM, aNDF and ADF were not affected by dietary herb supplementation while CP digestibility tended to be decreased by herb supplement. Moreover, $NH_3$-N and BUN were decreased in all herb supplemented treatments and there was a tendency to an increase in ruminal pH in all herb supplemented groups. While there was no change in TVFA and C4 among lemongrass treatments, C2 was decreased in all herb supplemented treatments while C3 was increased. Methane production by calculation was the lowest in the LP and LPG groups. Population sizes of bacteria and protozoa were decreased in all herb supplemented groups, but not fungal zoospores. In all supplemented groups, total viable and proteolytic bacteria were decreased, while amylolytic and cellulolytic bacteria were similar. More importantly, in all herb supplemented groups, there were higher N balances, while there was no difference among treatments on purine derivative (PD) excretion or microbial N. Based on the results above, it could be concluded that there was no negative effect on ruminal fermentation characteristics and nutrient utilization by plant herb supplement, but protozoal population and $CH_4$ production were reduced. Thus, lemongrass alone or in combination with peppermint and garlic powder could be used as feed additives to improve rumen fermentation efficiency.

Effect of Additives and Fermentation Periods on Chemical Composition and In situ Digestion Kinetics of Mott Grass (Pennisetum purpureum) Silage

  • Nisa, Mahr-un;Touqir, N.A.;Sarwar, M.;Khan, M. Ajmal;Akhtar, Mumtaz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.812-815
    • /
    • 2005
  • This study was conducted to see the influence of additives and fermentation periods on Mott grass silage (MGS) characteristics, its chemical composition and to compare the digestion kinetics of Mott grass (MG) and MGS in Nili buffaloes. Mott grass chopped with a locally manufactured chopper was ensiled using two additives, cane molasses and crushed corn grains each at 2, 4 and 6% of forage DM for 30 and 40 days in laboratory silos. The pH, lactic acid concentration, dry matter (DM), crude protein and fiber fractions of MGS were not affected by the type or level of additive and fermentation periods. The non-significant pH lactic acid concentration, and chemical composition of MGS indicated that the both molasses and crushed corn were utilized at similar rate for the growth of lactic acid bacteria and production of organic acids. The MG ensiled with molasses at 2% of fodder DM for 30 days was screened out for in situ digestion kinetics in Nili buffaloes. Ruminal DM and neutral detergent fiber (NDF) degradabilities of MGS were significantly (p<0.05) higher than that of MG. The DM and NDF rate of degradation, lag time and extent of degradation was nonsignificant between MGS and MG. The higher ruminal degradation of DM and NDF of MGS than MG was probably a reflection of fermentation of MG during ensilation that improved its degradability by improving the availability of easily degradable structural polysaccharides to ruminal microbial population. The results in the present study have indicated that MG ensiled with either 2% molasses or 2% crushed corn for 30 days has better nutritive value for buffalo.

Effects of Tween 80 and Fibrolytic Enzymes on Ruminal Fermentation and Digestibility of Feeds in Holstein Cows

  • Baah, J.;Shelford, J.A.;Hristov, A.N.;McAllister, T.A.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.816-824
    • /
    • 2005
  • The effects of the nonionic surfactant Tween 80 and a mixture of fibrolytic enzymes on total tract digestion, in situ disappearance (ISD) and ruminal fermentation characteristics of orchardgrass hay and barley grain were investigated in a 4${\times}$4 Latin square experiment with 4 non-lactating Holstein cows and 4 diets in 4 periods. Cows were offered a total mixed ration of 50% rolled barley grain and 50% orchardgrass hay treated with either 1) water (control), 2) 0.2% (vol/wt) Tween 80, 3) 0.2% (vol/wt) hydrolytic enzyme, or 4) 0.2% hydrolytic enzyme plus 0.2% Tween 80. Total tract digestibility coefficients of DM, nitrogen, NDF and ADF were not affected (p>0.05) by dietary treatment. Compared to the control, the rate of ISD of DM from orchardgrass hay was faster (p<0.05) in cows receiving diets treated with the enzyme alone or with enzyme plus Tween 80 (0.06/h vs. 0.076 and 0.069/h). The rate of digestion was lower (p<0.05) as compared to control when barley grain was treated with these additives. Ruminal fluid pH and concentrations of total VFA, acetate, isobutyrate and butyrate were not affected (p>0.05) by treatments. Cows that consumed diets treated with enzyme plus Tween 80 had higher (p<0.05) ruminal concentrations of propionate and isovalerate, and lower (p<0.05) acetate:propionate ratios. Compared to the control, microbial protein synthesis tended (p = 0.13) to increase with the addition of enzyme to the diet while nonammonia nitrogen flow to the duodenum increased (p<0.05) with both enzyme and Tween 80 treatments. The study indicated that fibrolytic enzymes alone or in combination with Tween 80 could enhance ISD of orchardgrass hay and ruminal concentrations of propionate, valerate and iso-valerate, but do not affect total tract digestibility.