Acknowledgement
본 연구는 농촌진흥청 연구사업(RS-2023-00231243)의 지원에 의해 이루어진 것임.
References
- Abbott, D. W., I. M. Aasen, K. A. Beauchemin, F. Grondahl, R. Gruninger, M. Hayes, and X. Xing. 2020. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals. 10(12): 2432.
- AOAC (Association of Official Analytical Chemists). 2016. Development and Use of In House Reference Materials: Guidelines for Standard Method Performance Requirements. Page 2. 19Th Edition of the AOAC International Official Methods of Analysis, Appendix F.
- Beauchemin, K. A., S. M. McGinn, and H. V. Petit. 2007. Methane abatement strategies for cattle: Lipid supplementation of diets. Can. J. Anim. Sci. 87: 431-440. https://doi.org/10.4141/CJAS07011
- Brooke, C. G., B. M. Roque, N. Najafi, and M. Hess. 2020. Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Front. Mar. Sci. 7: 7.
- Chaney, A. L. and E. P. Edward. 1962. Modified reagents for determination of urea and ammonia. Clin. chem. 8(2): 130-132. https://doi.org/10.1093/clinchem/8.2.130
- Cho, D. M., D. S. Kim, D. S. Lee, H. R. Kim, and J. H. Pyeun. 1995. Trace component and functional saccharides in seaweed-1 changes in proximate composition and trace element according to the harvest season and places. Bull Korean Fish Soc. 28: 49-59.
- Choi, Y., S. J. Lee, H. S. Kim, J. S. Eom, S. U. Jo, L. L. Guan, and S. S. Lee. 2021. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Scientific Reports. 11(1): 24092.
- Choi, Y., S. J. Lee, H. S. Kim, J. S. Eom, S. U. Jo, L. L. Guan, and S. S. Lee. 2022. Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro. Front. Vet. Sci. 9: 985824.
- Dohme, F, A. Machmuller, A. Wasserfallen, and M. Kreuzer. 2001. Ruminal methanogesis as influenced by individual fatty acids supplemented to complete ruminant diets. Letters in applied microbiology. 32(1): 47-51. https://doi.org/10.1046/j.1472-765x.2001.00863.x
- Erwin, E. S, G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
- Glasson, C. R., R. D. Kinley, R. de Nys, N. King, S. L. Adams, M. A. Packer, and M. Magnusson. 2022. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 64: 102673.
- Hernandez-Vazquez, J. M. V., H. Lopez-Munoz, M. L. Escobar-Sanchez, F. Flores-Guzman, B. Weiss-Steider, J. C. Hilario-Martinez, J. Sandoval-Ramirez, M. A. Fernandez-Herrera, and L. Sanchez Sanchez. 2020. Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. Eur. J. Pharmacol. Mar 15. 871: 172942.
- Holdt, S. L. and S. Kraan. 2011. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 23: 543-597. https://doi.org/10.1007/s10811-010-9632-5
- IPCC AR6 WGI. 2021. "IPCC, 2021: Summary for policymakers".
- Ito, M., K. Koba, R. Hikihara, M. Ishimaru, T. Shibata, H. Hatate, and R. Tanaka. 2018. Analysis of functional components and radical scavenging activity of 21 algae species collected from the Japanese coast. Food chemistry. 255: 147-156. https://doi.org/10.1016/j.foodchem.2018.02.070
- Kwon, Y. R. and K. S. Yon. 2017. Antioxidant and physiological activities of Hijikia fusiforme by extraction methods. Korean Journal of Food Preservation. 24(5): 631-637. https://doi.org/10.11002/KJFP.2017.24.5.631
- Keskinkaya, H. B., E. Deveci, E. Gunes, E. S. Okudan, C. Akkoz, N. E. Gumus, and S. Karakurt. 2022. Chemical Composition, In Vitro Antimicrobial and Antioxidant Activities of Marine Macroalgae Codium fragile (Suringar) Hariot. Commagene J. Biol. 6(1): 94-104.
- Kumar, C. S., P. Ganesan, P. V. Suresh, and N. Bhaskar. 2008. Seaweeds as a source of nutritionally beneficial compounds - A review. J. Food Sci. Technol. 45: 1-13.
- Lee, S. A., S. M. Moon, Y. H. Choi, S. H. Han, B. R. Park, M. S. Choi, and C. S. Kim. 2017. Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264. 7 cells and carrageenan-induced rats. Biomed. Pharmacother. 93: 1055-1064. https://doi.org/10.1016/j.biopha.2017.07.026
- Machado. L., M. Magnusson, N. A. Paul, R. de Nys, and N. Tomkins. 2014. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE. 9(1): e85289.
- Maia, M. R., A. J. Fonseca, H. M. Oliveira, C. Mendonca, and A. R. Cabrita. 2016. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Scientific reports. 6(1): 32321.
- Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 85: 1217-1240.
- National Greenhouse Gas Inventory Report of Korea. 2022. Greenhouse Gas Inventory and Research Center.
- NATIONAL RESEARCH COUNCIL (NRC). 2001. Nu trient requ irements of dairy cattle. 7.ed. Washington, D.C. National Academy Press.
- Newbold, C. J., B. Lassalas, and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21: 230-234. https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
- Newbold, C. J. 2010. Assessing antiprotozoal agents. In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants. 47-53.
- Preston, T. R. and K. A. Leng. 1987. Matching Ruminant Production System with Available Resources in the Tropics and Subtropics. Penambul Books, Armidale. pp. 20-25.
- Roque, B. M., J. K. Salwen, R. Kinley, and E. Kebreab. 2019. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 234: 132-138. https://doi.org/10.1016/j.jclepro.2019.06.193
- Sofyan, A., A. Irawan, H. Herdian, M. A. Harahap, A. A. Sakti, A. E. Suryani, H. Novianty, T. Kurniawan, I. N. G. Darma, A. Windarsih, and A. Jayanegara. 2022. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Animal Feed Sci. Technol. 294: 115503.
- Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: United State.
- Wang, Y., Z. Xu, S. J. Bach, and T. A. Mcallister. 2008. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Animal Feed Science and Technology. 145(1-4): 375-395. https://doi.org/10.1016/j.anifeedsci.2007.03.013
- Zhou , X., L. Meile, M. Kreu zer, and J. O. Zeitz. 2013. The effect of satu rated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. Archaea.