DOI QR코드

DOI QR Code

The Effects of Korean Seaweeds on In vitro Ruminal Fermentation Characteristics and Methane Production

국내 자생 해조류 첨가가 in vitro 반추위 발효 성상 및 메탄 발생량에 미치는 영향

  • 김별 (농촌진흥청 국립축산과학원 동물영양생리과) ;
  • 위지수 (농촌진흥청 국립축산과학원 동물영양생리과) ;
  • 이유경 (농촌진흥청 국립축산과학원 동물영양생리과) ;
  • 김현상 (농촌진흥청 국립축산과학원 동물영양생리과) ;
  • 성필남 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 이성대 (농촌진흥청 국립축산과학원 동물영양생리과) ;
  • 황일기 (해양수산부 국립수산과학원 수산식물품종관리센터) ;
  • 김현철 (해양수산부 국립수산과학원 육종연구센터) ;
  • 이성신 (농촌진흥청 국립축산과학원 동물영양생리과)
  • Received : 2024.03.26
  • Accepted : 2024.07.02
  • Published : 2024.08.30

Abstract

The present study was conducted to investigate the effects of seaweeds on in vitro ruminal fermentation characteristics and methane gas production. Five seaweeds (Dictyota dichotoma, DD; Chrysymenia wrightii Yamada, CW; Codium fragile, CF; Sargassum fusiforme, SF; Gracilaria vermiculophylla, GV) were obtained from National Institute of Fisheries Science (NIFS) in South Korea. The ruminal fluids were collected from 3 rumen-cannulated Hanwoo steers (average 12-months-old). The buffered ruminal fluids (50 mL) were incubated with substrates (0.4 g of concentrate and 0.1 g of rice straw in dry matter basis) and seaweeds (5% of substrates) at 39℃ for 24 and 48 hours. The total gas and methane production of all treatments incubated for 24 hours were not affected by the seaweed. However, methane production (mL/g of digested dry matter) in the CW and CF treatments incubated for 48 hours was decreased compared to control (p<0.05). Additionally, the ruminal pH of all treatments incubated for 24 and 48 hours was lower than control (p<0.05). There was no signigicant difference in total VFA concentration at 24 hours of incubation, but it was higher in the CF treatment at 48 hours of incubation (p<0.05). The dry matter digestibility of all treatments incubated for 24 and 48 hours were not affected by the seaweed. In conclusion, Codium fragile reduced in vitro methane production without negative effects on rumen fermentation characteristics.

국내에서 자생하고 있는 해조류를 첨가하여 in vitro 반추위 발효성상 및 메탄 발생량 분석을 실시하였다. 해조류 처리구에서 in vitro 배양 24시간대 총 가스 및 메탄 발생량 결과는 전 처리구에서 유의적인 차이가 없었으나 배양 48시간대 메탄 발생량 결과에서는 누른 끈적이와 청각 처리구에서 유의적으로(p<0.05) 낮았다. 해조류 처리구의 반추위 pH는 5.75~6.12로 대조구 대비 유의적으로(p<0.05) 낮았다. Total VFA 농도는 배양 24시간대에서 유의적인 차이가 없었으나, 청각 처리구에서 배양 48시간대 대조구 대비 유의적으로(p<0.05) 높았다. NH3-N 농도는 톳 처리구에서 배양 24시간과 48시간대 모두 대조구 대비 유의적으로 (p<0.05) 낮았다. 건물 소화율은 배양 24시간과 48시간대 모두 유의적인 차이를 보이지 않 아 해조류가 반추위 건물 소화율에 부정적인 영향을 미치지 않았다. 이를 통해 청각이 반추위 발효성상 및 소화율에 부정적인 영향을 미치지 않으면서 메탄 발생량을 감소시키는 효과를 보여, 추후 메탄 저감 소재로서 평가를 위해 가축 급여 실험을 통한 검증이 필요하다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(RS-2023-00231243)의 지원에 의해 이루어진 것임.

References

  1. Abbott, D. W., I. M. Aasen, K. A. Beauchemin, F. Grondahl, R. Gruninger, M. Hayes, and X. Xing. 2020. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals. 10(12): 2432.
  2. AOAC (Association of Official Analytical Chemists). 2016. Development and Use of In House Reference Materials: Guidelines for Standard Method Performance Requirements. Page 2. 19Th Edition of the AOAC International Official Methods of Analysis, Appendix F.
  3. Beauchemin, K. A., S. M. McGinn, and H. V. Petit. 2007. Methane abatement strategies for cattle: Lipid supplementation of diets. Can. J. Anim. Sci. 87: 431-440. https://doi.org/10.4141/CJAS07011
  4. Brooke, C. G., B. M. Roque, N. Najafi, and M. Hess. 2020. Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Front. Mar. Sci. 7: 7.
  5. Chaney, A. L. and E. P. Edward. 1962. Modified reagents for determination of urea and ammonia. Clin. chem. 8(2): 130-132. https://doi.org/10.1093/clinchem/8.2.130
  6. Cho, D. M., D. S. Kim, D. S. Lee, H. R. Kim, and J. H. Pyeun. 1995. Trace component and functional saccharides in seaweed-1 changes in proximate composition and trace element according to the harvest season and places. Bull Korean Fish Soc. 28: 49-59.
  7. Choi, Y., S. J. Lee, H. S. Kim, J. S. Eom, S. U. Jo, L. L. Guan, and S. S. Lee. 2021. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Scientific Reports. 11(1): 24092.
  8. Choi, Y., S. J. Lee, H. S. Kim, J. S. Eom, S. U. Jo, L. L. Guan, and S. S. Lee. 2022. Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro. Front. Vet. Sci. 9: 985824.
  9. Dohme, F, A. Machmuller, A. Wasserfallen, and M. Kreuzer. 2001. Ruminal methanogesis as influenced by individual fatty acids supplemented to complete ruminant diets. Letters in applied microbiology. 32(1): 47-51. https://doi.org/10.1046/j.1472-765x.2001.00863.x
  10. Erwin, E. S, G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  11. Glasson, C. R., R. D. Kinley, R. de Nys, N. King, S. L. Adams, M. A. Packer, and M. Magnusson. 2022. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 64: 102673.
  12. Hernandez-Vazquez, J. M. V., H. Lopez-Munoz, M. L. Escobar-Sanchez, F. Flores-Guzman, B. Weiss-Steider, J. C. Hilario-Martinez, J. Sandoval-Ramirez, M. A. Fernandez-Herrera, and L. Sanchez Sanchez. 2020. Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. Eur. J. Pharmacol. Mar 15. 871: 172942.
  13. Holdt, S. L. and S. Kraan. 2011. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 23: 543-597. https://doi.org/10.1007/s10811-010-9632-5
  14. IPCC AR6 WGI. 2021. "IPCC, 2021: Summary for policymakers".
  15. Ito, M., K. Koba, R. Hikihara, M. Ishimaru, T. Shibata, H. Hatate, and R. Tanaka. 2018. Analysis of functional components and radical scavenging activity of 21 algae species collected from the Japanese coast. Food chemistry. 255: 147-156. https://doi.org/10.1016/j.foodchem.2018.02.070
  16. Kwon, Y. R. and K. S. Yon. 2017. Antioxidant and physiological activities of Hijikia fusiforme by extraction methods. Korean Journal of Food Preservation. 24(5): 631-637. https://doi.org/10.11002/KJFP.2017.24.5.631
  17. Keskinkaya, H. B., E. Deveci, E. Gunes, E. S. Okudan, C. Akkoz, N. E. Gumus, and S. Karakurt. 2022. Chemical Composition, In Vitro Antimicrobial and Antioxidant Activities of Marine Macroalgae Codium fragile (Suringar) Hariot. Commagene J. Biol. 6(1): 94-104.
  18. Kumar, C. S., P. Ganesan, P. V. Suresh, and N. Bhaskar. 2008. Seaweeds as a source of nutritionally beneficial compounds - A review. J. Food Sci. Technol. 45: 1-13.
  19. Lee, S. A., S. M. Moon, Y. H. Choi, S. H. Han, B. R. Park, M. S. Choi, and C. S. Kim. 2017. Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264. 7 cells and carrageenan-induced rats. Biomed. Pharmacother. 93: 1055-1064. https://doi.org/10.1016/j.biopha.2017.07.026
  20. Machado. L., M. Magnusson, N. A. Paul, R. de Nys, and N. Tomkins. 2014. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE. 9(1): e85289.
  21. Maia, M. R., A. J. Fonseca, H. M. Oliveira, C. Mendonca, and A. R. Cabrita. 2016. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Scientific reports. 6(1): 32321.
  22. Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 85: 1217-1240.
  23. National Greenhouse Gas Inventory Report of Korea. 2022. Greenhouse Gas Inventory and Research Center.
  24. NATIONAL RESEARCH COUNCIL (NRC). 2001. Nu trient requ irements of dairy cattle. 7.ed. Washington, D.C. National Academy Press.
  25. Newbold, C. J., B. Lassalas, and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21: 230-234. https://doi.org/10.1111/j.1472-765X.1995.tb01048.x
  26. Newbold, C. J. 2010. Assessing antiprotozoal agents. In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants. 47-53.
  27. Preston, T. R. and K. A. Leng. 1987. Matching Ruminant Production System with Available Resources in the Tropics and Subtropics. Penambul Books, Armidale. pp. 20-25.
  28. Roque, B. M., J. K. Salwen, R. Kinley, and E. Kebreab. 2019. Inclusion of Asparagopsis armata in lactating dairy cows' diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 234: 132-138. https://doi.org/10.1016/j.jclepro.2019.06.193
  29. Sofyan, A., A. Irawan, H. Herdian, M. A. Harahap, A. A. Sakti, A. E. Suryani, H. Novianty, T. Kurniawan, I. N. G. Darma, A. Windarsih, and A. Jayanegara. 2022. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Animal Feed Sci. Technol. 294: 115503.
  30. Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: United State.
  31. Wang, Y., Z. Xu, S. J. Bach, and T. A. Mcallister. 2008. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Animal Feed Science and Technology. 145(1-4): 375-395. https://doi.org/10.1016/j.anifeedsci.2007.03.013
  32. Zhou , X., L. Meile, M. Kreu zer, and J. O. Zeitz. 2013. The effect of satu rated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. Archaea.