• Title/Summary/Keyword: Rumen Parameters

Search Result 146, Processing Time 0.019 seconds

Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition

  • Adejoro, Festus A.;Hassen, Abubeker;Thantsha, Mapitsi S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.977-987
    • /
    • 2019
  • Objective: The use of tannin extract and other phytochemicals as dietary additives in ruminants is becoming more popular due to their wide biological actions such as in methane mitigation, bypass of dietary protein, intestinal nematode control, among other uses. Unfortunately, some have strong astringency, low stability and bioavailability, and negatively affecting dry matter intake and digestibility. To circumvent these drawbacks, an effective delivery system may offer a promising approach to administer these extracts to the site where they are required. The objectives of this study were to encapsulate acacia tannin extract (ATE) with native starch and maltodextrin-gum arabic and to test the effect of encapsulation parameters on encapsulation efficiency, yield and morphology of the microparticles obtained as well as the effect on rumen in vitro gas production. Methods: The ATE was encapsulated with the wall materials, and the morphological features of freeze-dried microparticles were evaluated by scanning electron microscopy. The in vitro release pattern of microparticles in acetate buffer, simulating the rumen, and its effect on in vitro gas production was evaluated. Results: The morphological features revealed that maltodextrin/gum-arabic microparticles were irregular shaped, glossy and smaller, compared with those encapsulated with native starch, which were bigger, and more homogenous. Maltodextrin-gum arabic could be used up to 30% loading concentration compared with starch, which could not hold the core material beyond 15% loading capacity. Encapsulation efficiency ranged from $27.7%{\pm}6.4%$ to $48.8%{\pm}5.5%$ in starch and $56.1%{\pm}4.9%$ to $64.8%{\pm}2.8%$ in maltodextrin-gum arabic microparticles. Only a slight reduction in methane emission was recorded in encapsulated microparticles when compared with the samples containing only wall materials. Conclusion: Both encapsulated products exhibited the burst release pattern under the pH conditions and methane reduction associated with tannin was marginal. This is attributable to small loading percentages and therefore, other wall materials or encapsulation methods should be investigated.

Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage

  • Wan, Jiang Chun;Xie, Kai Yun;Wang, Yu Xiang;Liu, Li;Yu, Zhu;Wang, Bing
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. Conclusion: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

Supplementation of guanidinoacetic acid and rumen-protected methionine increased growth performance and meat quality of Tan lambs

  • Zhang, Jian Hao;Li, Hai Hai;Zhang, Gui Jie;Zhang, Ying Hui;Liu, Bo;Huang, Shuai;Guyader, Jessie;Zhong, Rong Zhen
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1556-1565
    • /
    • 2022
  • Objective: Tan lambs (n = 36, 3 mo old, 19.1±0.53 kg) were used to assess effects of dietary guanidinoacetic acid (GAA) and rumen-protected methionine (RPM) on growth performance, carcass traits, meat quality, and serum parameters. Methods: Lambs were randomly assigned to three treatment groups, with 6 pens per group and 2 lambs per pen. Dietary treatments were: basal diet alone (I); basal diet supplemented with 0.08% GAA+0.06% RPM (II); and basal diet supplemented with 0.08% GAA+0.08% RPM (III). Diets were provided three times a day for 90 d. Intake per pen was recorded daily and individual lamb body weight (BW) was measured monthly. Carcass traits were measured after slaughter and meat quality at the end of the experiment, blood samples were taken on a subgroup of lambs for analysis of indicators mostly related to protein metabolism. Results: Final BW and average daily gain for the first and second month, and for the entire experiment were greater in Treatment II compared to Treatment I (p<0.05), whereas feed to gain ratio was lower (p<0.05). Treatment II had the optimal dressing percentage and net meat weight proportion, as well as crude protein and intramuscular fat concentrations in muscles. Treatment II improved meat quality, as indicated by the greater water holding capacity, pH after 45 min and 48 h, and lower shear force and cooking loss. Dietary supplementation of GAA and RPM also increased the meat color a* and b* values at 24 h. Finally, Treatment II increased total protein, and serum concentrations of albumin and creatinine, but decreased serum urea nitrogen concentrations, indicating improved protein efficiency. Conclusion: In this study, 0.08% GAA+0.06% RPM supplementation improved growth performance and meat quality of Tan lambs.

Replacing alfalfa hay with amaranth hay: effects on production performance, rumen fermentation, nutrient digestibility and antioxidant ability in dairy cow

  • Jian Ma;Xue Fan;Guoqing Sun;Fuquan Yin;Guangxian Zhou;Zhihui Zhao;Shangquan Gan
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.218-227
    • /
    • 2024
  • Objective: The aim of this research was to explore the effects of dietary substitution of alfalfa hay by amaranth hay on production performance, rumen fermentation, nutrient digestibility, serum biochemical parameters and antioxidant ability in dairy cows. Methods: A total of 45 healthy Holstein cows with same parity and similar milk yield and body weight were randomly divided into 3 groups: control diet without amaranth hay (CON) or 50% and 100% alfalfa hay replaced by an equal amount of amaranth hay (dry matter basis, AH1 and AH2, respectively). All the cows were fed regularly 3 times a day at 06:30, 14:30, and 22:30 and had free access to water. The experiment lasted for 60 d. Results: The dry matter intake of CON and AH1 groups was higher (p<0.05) than that of AH2 group. Compared with AH1 group, the milk yield of AH2 group was reduced (p<0.05). Moreover, dietary substitution of alfalfa hay by amaranth hay increased (p<0.05) milk fat, ammonia nitrogen and acetate concentrations. However, the crude protein digestibility of AH2 group was lower (p<0.05) than that of CON group, while an opposite tendency of serum urea nitrogen was found between two groups. The neutral detergent fiber digestibility of AH1 group was increased (p<0.05) when compared to AH2 group. Amaranth hay treatment increased (p<0.05) the serum concentration of glutathione peroxidase in dairy cows. Compared with CON group, the malonaldehyde activity of AH1 group was decreased (p<0.05). Conclusion: Dietary replacing alfalfa hay with amaranth hay (50% ratio) in dairy cows did not affect production performance but improved their antioxidant ability.

Fermentation Characteristics and Microbial Protein Synthesis in an In Vitro System Using Cassava, Rice Straw and Dried Ruzi Grass as Substrates

  • Sommart, K.;Parker, D.S.;Rowlinson, P.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1084-1093
    • /
    • 2000
  • An in vitro gas production system was used to investigate the influence of various substrate mixtures on a natural mix of rumen microbes by measurement of fermentation end-products. The treatments were combinations of cassava (15.0, 30.0 and 45.0%) with different roughage sources (ruzi grass, rice straw or urea treated rice straw). Microbial biomass, net $^{15}N$ incorporation into cells, volatile fatty acid production, gas volume and rate of gas production increased linearly with increasing levels of cassava inclusion. There was also an effect of roughage source, with rice straw being associated with the lowest values for most parameters whilst similar values were obtained for ruzi grass and urea treated rice straw. The results suggest that microbial growth and fermentation rate increase as a function of readily available carbohydrate in the substrate mixture. A strong linear relationship between $^{15}N$ enrichment, total volatile fatty acid production and gas production kinetics support the suggestion of the use of the in vitro gas production system as a tool for screening feedstuffs as an initial stage of feed evaluation.

Evaluation of Forest Tree Leaves of Semi-hilly Arid Region as Livestock Feed

  • Bakshi, M.P.S.;Wadhwa, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.777-783
    • /
    • 2004
  • Samples of 13 species of forest tree leaves fed to livestock in the semi-hilly arid zone of Punjab State in India were collected at 30 d interval for 12 months, in order to assess their nutritional worth for livestock. The ground samples were pooled for 4 different seasons viz. dry hot, hot humid, fall and winter. The chemical composition irrespective of the season revealed that CP content varied between 8.9 (Carrisa) to 22.0% (Leucaena). Globulin was the major protein fraction in most of the leaves. The lowest concentration of cell wall constituents was observed in Morus alba and Grewea. The leaves in general became fiberous and lignified during winter and fall as compared to summer season. The leaves of Grewea, Morus alba, Leucaena, Carrisa and Acacia were rich in Ca, P and most of the trace elements. The total phenolics ranged between 1.88% (Azardirachta) to 15.82% (Acacia). The leaves of Acacia had the highest concentration of hydrolysable tannins (14.6%) whereas that of Carrisa had that of condensed tannins (5.9%). The condensed tannins (more than 3%) were negatively correlated to the digestibility of dry matter (DM), neutral detergent fiber (NDF) and crude protein (CP). The digestion kinetic parameters for DM, NDF and CP revealed that leaves of Morus alba, Zizyphus and Ehretia had highest insoluble but potentially degradable fraction. The minimum rumen fill values also revealed that leaves of Grewea, Azardirachta, Morus, Ehretia and Leucaena had great potential for voluntary DM intake. The leaves of Ougeinia, Malha, Dodenia and Carrisa had significantly higher rumen fill value indicating poor potential for voluntary DM intake. Season did not have any significant impact on digestion kinetic parameters except that most of the leaves had low potentially degradable fraction, which was degraded at slow rate during winter. It was concluded that the leaves of Morus, Ehretia, Grewea and Leucaena had great potential as livestock feed, while feeding of Ougeinia, Malha and Dodonea leaves should be avoided.

Effects of replacement of para-grass with oil palm compounds on body weight, food intake, nutrient digestibility, rumen functions and blood parameters in goats

  • Buranakarl, C.;Thammacharoen, S.;Semsirmboon, S.;Sutayatram, S.;Chanpongsang, S.;Chaiyabutr, N.;Katoh, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.921-929
    • /
    • 2020
  • Objective: The aim of the present study was to investigate the beneficial effects of dietary supplementation with oil palm frond (leaf) (OPF) with and without oil palm meal (OPM) on nutrient intake and digestibility, ruminal fermentation and growth performance in goats. Methods: Six female crossbred goats were fed for 28 days of 3 diet treatments; 100% para-grass (T1); 50% para-grass + 50% OPF (T2), and 30% para-grass + 50% OPF + 20% OPM (T3). Body weight, rectal temperature, respiratory rate, and urine volume, food intake, dry matter intake and water intake were measured daily. Nutrient digestibility was determined from five consecutive days of last week in each diet. Ruminal fluid, urine and blood were collected at the end for determination of rumen protozoa and volatile fatty acid contents, urinary allantoin excretion, blood cell count and chemistry profiles. Results: Goats fed T2 and T3 showed higher dry matter and nutrients intakes while protein digestibility was suppressed compared with those for T1. Crude fat digestibility declined in T2 but maintained after adding the OPM (T3). High fat intake by giving OPF and OPM corresponded to a higher ruminal acetate/propionate ratio (C2/C3) and serum cholesterol level. An increased urinary allantoin/creatinine ratio was found in T2 and T3 compared with T1, implying an increased number of ruminal microbes. Conclusion: Increased dry matter intake in T2 and T3 suggested that oil palm by-products are partly useful as a replacement for para-grass in goats. Replacement with the by-products increased plasma cholesterol level, which suggested that these products are a useful energy source. Changes in rumen parameters suggested an increased microbial number and activity suitable for acetate production. However, the limited digestibility of protein implies that addition of high protein feeds may be recommended to increase body weight gain of goats.

Evaluation the Feed Value of Whole Crop Rice Silage and Comparison of Rumen Fermentation according to Its Ratio (신규 조사료원 사료용 벼 사일리지의 사료가치 평가 및 급여 비율에 따른 반추위 발효성상 비교)

  • Park, Seol Hwa;Baek, Youl Chang;Lee, Seul;Kim, Byeong Hyeon;Ryu, Chae Hwa
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.236-243
    • /
    • 2020
  • This study was to evaluate the feed value of whole crop rice silage (WCRS) and to investigate a suitable ratio of the WCRS and concentrate by an analysis of rumen fermentation. A total of 6 treatments were used according to WCRS: concentrate ratio on in vitro rumen fermentation: T1 (100:0), T2 (60:40), T3 (40:60), T4 (20:80), T5 (10:90), and T6 (0:100). The ruminal pH, total gas emission, ammonia nitrogen, and volatile fatty acid (VFA) were determined as fermentation parameters. Total nutrients digestibility trial was conducted by 4 treatments according to WCRS: concentrate ratio at 40:60 (W40), 20:80 (W20), and 10:90 (W10), respectively. Feed value was analyzed according to AOAC (2019) and nutrient digestibility was calculated based on NRC (2001). The levels of crude protein (CP), crude fat, and neutral detergent fiber of the WCRS were 12.29%, 1.67%, and 59.79%, respectively. It was found to be 51.49% as a result of predicting the total digestible nutrient of WCRS using the NRC (2001) model. In vitro rumen fermentation, T4, T5, and T6 treatments showed a greater gas emission and total VFA concentration compared with other treatments (p<0.05). Acetate and acetate to propionate ratio of T4, T5, and T6 were significantly higher than other treatments (p<0.05). There was a significant difference in the level of propionate and butyrate according to the WCRS: concentrate ratio (p<0.05). The digestibility of dry matter and CP was significantly lower in W40 than in other treatments (p<0.05); however, there was no difference in W20 and W10. In conclusion, the 20:80 (WCRS: concentrate) is beneficial for stabilizing the rumen that does not inhibit rumen fermentation and nutrient digestion. This ratio might have a positive effect on the economics of farms as a valuable feed.

Effects of Gamma Irradiation on Chemical Composition, Antinutritional Factors, Ruminal Degradation and In vitro Protein Digestibility of Full-fat Soybean

  • Taghinejad, M.;Nikkhah, A.;Sadeghi, A.A.;Raisali, G.;Chamani, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.534-541
    • /
    • 2009
  • The aim of this study was to evaluate the effects of gamma irradiation (${\gamma}$-irradiation) at doses of 15, 30 and 45 kGy on chemical composition, anti-nutritional factors, ruminal dry matter (DM) and crude protein (CP) degradibility, in vitro CP digestibility and to monitor the fate of true proteins of full-fat soybean (SB) in the rumen. Nylon bags of untreated or ${\gamma}$-irradiated SB were suspended in the rumens of three ruminally-fistulated bulls for up to 48 h and resulting data were fitted to a nonlinear degradation model to calculate degradation parameters of DM and CP. Proteins of untreated and treated SB bag residues were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Digestibility of rumen undegraded CP was estimated using the three-step in vitro procedure. The chemical composition of raw and irradiated soybeans was similar. Results showed that phytic acid in ${\gamma}$-irradiated SB at dose of 30 kGy was eliminated completely. The trypsin inhibitor activity of 15, 30 and 45 kGy ${\gamma}$-irradiated SB was decreased (p<0.01) by 18.4, 55.5 and 63.5%, respectively. From in sacco results, ${\gamma}$-irradiation decreased (p<0.05) the washout fractions of DM and CP at doses of 30 and 45 kGy, but increased (p<0.05) the potentially degradable fractions. Gamma irradiation at doses of 15, 30 and 45 kGy decreased (p<0.05) effective degradability of CP at a rumen outflow rate of 0.05 $h^{-1}$ by 4.4, 14.4 and 26.5%, respectively. On the contrary, digestibility of ruminally undegraded CP of irradiated SB at doses of 30 and 45 kGy was improved (p<0.05) by 12 and 28%, respectively. Electrophoretic analysis of untreated soybean proteins incubated in the rumen revealed that ${\beta}$-conglycinin subunits had disappeared at 2 h of incubation time, whereas the subunits of glycinin were more resistant to degradation until 16 h of incubation. From the SDS-PAGE patterns, acidic subunits of 15, 30 and 45 kGy ${\gamma}$-irradiated SB disappeared after 8, 8 and 16 h of incubation, respectively, while the basic subunits of glycinin were not degraded completely until 24, 48 and 48 h of incubation, respectively. It was concluded that ${\gamma}$-irradiated soybean proteins at doses higher than 15 kGy could be effectively protected from ruminal degradation.

Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

  • Jayanegara, Anuraga;Wina, Elizabeth;Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1426-1435
    • /
    • 2014
  • Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins produced less methane per unit of total gas than that of control (p<0.05). Although numerically the order of effectiveness of saponin-rich sources in mitigating methane was yucca>tea>quillaja, statistically they did not differ each other. It can be concluded that methane mitigating properties of saponins in the rumen are level- and source-dependent.