• 제목/요약/키워드: Rumen Degradation Characteristics

검색결과 54건 처리시간 0.033초

Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro

  • Tansol Park;Zhongtang Yu
    • Journal of Animal Science and Technology
    • /
    • 제65권2호
    • /
    • pp.387-400
    • /
    • 2023
  • Ruminal protozoa, especially entodiniomorphs, engulf other members of the rumen microbiome in large numbers; and they release oligopeptides and amino acids, which can be fermented to ammonia and volatile fatty acids (VFAs) by amino acid-fermenting bacteria (AAFB). Studies using defaunated (protozoa-free) sheep have demonstrated that ruminal protozoa considerably increase intraruminal nitrogen recycling but decrease nitrogen utilization efficiency in ruminants. However, direct interactions between ruminal protozoa and AAFB have not been demonstrated because of their inability to establish axenic cultures of any ruminal protozoan. Thus, this study was performed to evaluate the interaction between Entodinium caudatum, which is the most predominant rumen ciliate species, and an AAFB consortium in terms of feed degradation and ammonia production along with the microbial population shift of select bacterial species (Prevotella ruminicola, Clostridium aminophilum, and Peptostreptococcus anaerobius). From an Ent. caudatum culture that had been maintained by daily feeding and transfers every 3 or 4 days, the bacteria and methanogens loosely associated with Ent. caudatum cells were removed by filtration and washing. An AAFB consortium was established by repeated transfers and enrichment with casamino acids as the sole substrate. The cultures of Ent. caudatum alone (Ec) and AAFB alone (AAFB) and the co-culture of Ent. caudatum and AAFB (Ec + AAFB) were set up in three replicates and incubated at 39℃ for 72 h. The digestibility of dry matter (DM) and fiber (NDF), VFA profiles, ammonia concentrations, pH, and microscopic counts of Ent. caudatum were compared among the three cultures. The co-culture of AAFB and Ent. caudatum enhanced DM degradation, VFA production, and Ent. caudatum cell counts; conversely, it decreased acetate: propionate ratio although the total bacterial abundance was similar between Ec and the Ec + AAFB co-culture after 24 h incubation. The ammonia production and relative abundance of C. aminophilum and P. anaerobius did not differ between AAFB alone and the Ec + AAFB co-culture. Our results indicate that Ent. caudatum and AAFB could have a mutualistic interaction that benefited each other, but their interactions were complex and might not increase ammoniagenesis. Further research should examine how such interactions affect the population dynamics of AAFB.

Effects of Defaunation on Fermentation Characteristics, Degradation of Ryegrass Hay and Methane Production by Rumen Microbes In Vitro When Incubated with Plant Oils

  • Qin, Wei-Ze;Li, Cheng-Yun;Choi, Seong-Ho;Jugder, Shinekhuu;Kim, Hyun-Ju;Lee, Sang-Suk;Song, Man-Kang
    • 한국초지조사료학회지
    • /
    • 제34권3호
    • /
    • pp.193-201
    • /
    • 2014
  • This study was conducted to examine the effects of defaunation (removal of live protozoa) on fermentation characteristics, degradation of ryegrass hay and $CH_4$ (methane) production by rumen microbes when incubated with plant oils (SO, sunflower oil and LO, linseed oil) in vitro. Sodium lauryl sulfate (0.000375 g/ml) as a defaunation reagent was added into the culture solution and incubated anaerobically up to 24 h at $39^{\circ}C$. pH from defaunation was increased for all treatments from 6 h incubation times (p<0.01-0.001) compared with those from fauantion. Concentration of ammonia-N from defaunation is higher than that from faunation at 3 h (p<0.001), 12 h (p<0.05) and 24 h (p<0.001) incubation times. Defaunation decreased (p<0.01-0.001) total volatile fatty acid concentration at all incubation times. Molar proportions of $C_2$ (acetate, p<0.05-0.001) and butyrate (p<0.01-0.001) were also decreased by defaunation at all incubation times. Molar proportion of $C_3$ (propionate), however, was increased by defaunation at all incubation times (p<0.001). Thus the rate of $C_2$ to $C_3$ was decreased by defaunation at all incubation times (p<0.001). Defaunation decreased ED (effective degradability) of dry matter (p<0.001) and ED of neutral detergent fiber (p<0.001) of ryegrass hay. Defaunation decreased total gas, $CH_4$ production, $CH_4$ % in total gas and $CH_4/CO_2$ at all incubation times (p<0.001). Oil supplementation decreased total gas (p<0.05-0.001), $CH_4$ production (p<0.001) and $CH_4$ % in total gas (p<0.001) compared with control at all incubation times. The result of this study showed that defaunation combined with oil supplementation may cause an alteration of microbial communities and further medicate the fermentation pattern, resulting in both reduction of degradation of ryegrass hay and $CH_4$ production. No difference, however, was observed in all the examinations between SO and LO.

Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages

  • Qin, Wei-Ze;Choi, Seong-Ho;Lee, Seung-Uk;Lee, Sang-Suk;Song, Man-Kang
    • 한국초지조사료학회지
    • /
    • 제33권3호
    • /
    • pp.197-205
    • /
    • 2013
  • An in vitro study was conducted to determine the effects of defaunation (removal of protozoa) and forage sources (rice straw, ryegrass and tall fescue) on ruminal fermentation characteristics, methane ($CH_4$) production and degradation by rumen microbes. Sodium lauryl sulfate, as a defaunation reagent, was added into the mixed culture solution to remove ruminal protozoa at a concentration of 0.375 mg/ml. Pure cellulose (0.64 g, Sigma, C8002) and three forage sources were incubated in the bottle of culture solution of mixed rumen microbes (faunation) or defaunation for up to 24 h. The concentration of ammonia-N was high under condition of defaunation compared to that from faunation in all incubations (p<0.001). Total VFA concentration was increased at 3, 6 and 12 h (p<0.05~p<0.01) but was decreased at 24 h incubation (p<0.001) under condition of defaunation. Defaunation decreased acetate (p<0.001) and butyrate (p<0.001) proportions at 6, 12 and 24 h incubation times, but increased propionate (p<0.001) proportion at all incubation times for forages. Effective degradability of dry matter was decreased by defaunation (p<0.001). Defaunation not only decreased total gas (p<0.001) and $CO_2$ (p<0.01~0.001) production at 12 and 24 h incubations, but reduced $CH_4$ production (p<0.001) at all incubation times for all forages. The $CH_4$ production, regardless of defaunation, in order of forage sources were rice straw > tall fescue > ryegrass > cellulose (p<0.001) up to 24 h incubation.

Relative Palatability to Sheep of Some Browse Species, their In sacco Degradability and In vitro Gas Production Characteristics

  • Abdulrazak, S.A.;Nyangaga, J.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권11호
    • /
    • pp.1580-1584
    • /
    • 2001
  • A study was conducted to estimate the nutritive value of some selected acacia forages using palatability index, in sacco degradability and in vitro gas production characteristics. Ten wethers (mean wt. $18{\pm}3.5kg$) were offered Acacia tortilis, Acacia nilotica, Acacia mellifera, Acacia brevispica, Acacia Senegal and Leucaena leucocephala (control) using a cafeteria system to determine the species preference by the animals. The acacia species were rich in nitrogen and showed variable palatability pattern. Significant (p<0.05) differences in relative palatability index (RPI) were detected among the species with the following ranking: brevispica > leucaena > mellifera > tortilis > Senegal > nilotica. Acacia nilotica appeared to be of low relative palatability with RPI of 24% and this was attributed to relatively high phenolic concentrations. The DM potential degradability (B) and rate of degradation (c) of the species were significantly (p<0.05) different, ranging from 40.1 to 59.1% and 0.0285 to 0.0794/h respectively. Acacia species had moderate levels of rumen undegradable protein, much higher than that in leucaena. In vitro gas production results indicated the effect of polyphenolic compounds on the fermentation rate, with lower gas production recorded from A. nilotica and tortilis. Based on RPI, A. brevispica and mellifera were superior to the rest and comparable to L. leucocephala. Long-term feeding trials are required with the superior species when used as protein supplements to poor quality diets.

Effect of corn grain particle size on ruminal fermentation and blood metabolites of Holstein steers fed total mixed ration

  • Kim, Do Hyung;Choi, Seong Ho;Park, Sung Kwon;Lee, Sung Sill;Choi, Chang Weon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.80-85
    • /
    • 2018
  • Objective: This study was conducted to investigate the effect of corn grain particle size on ruminant fermentation and blood metabolites in Holstein steers fed total mixed ration (TMR) as a basal diet to explain fundamental data of corn grain for cattle in Korea. Methods: Four ruminally cannulated Holstein steers (body weight $592{\pm}29.9kg$) fed TMR as a basal diet were housed individually in an auto temperature and humidity modulated chamber ($24^{\circ}C$ and 60% for 22 h/d). Treatments in a $4{\times}4$ Latin square design were TMR only (control), TMR with whole corn grain (WC), coarsely ground corn grain (CC), and finely ground corn grain (FC), respectively. The corn feeds substituted for 20% energy intake of TMR intake. To measure the ruminal pH, ammonia N, and volatile fatty acids (VFA), ruminal digesta was sampled through ruminal cannula at 1 h intervals after the morning feeding to determine ruminal fermentation characteristics. Blood was sampled via the jugular vein after the ruminal digesta sampling. Results: There was no difference in dry matter (DM) intake between different corn particle size because the DM intake was restricted to 1.66% of body weight. Different corn particle size did not change mean ammonia N and total VFA concentrations whereas lower (p<0.05) ruminal pH and a ratio of acetate to propionate, and higher (p<0.05) propionate concentration were noted when the steers consumed CC compared with WC and FC. Concentration of blood metabolites were not affected by different particle size of corn grain except for blood triglyceride concentration, which was significantly (p<0.05) increased by FC. Conclusion: Results indicate that feeding CC may increase feed digestion in the rumen, whereas the FC group seemed to obtain inadequate corn retention time for microbial degradation in the rumen.

Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

  • Dong, Lifeng;Gao, Yanhua;Jing, Xuelan;Guo, Huiping;Zhang, Hongsen;Lai, Qi;Diao, Qiyu
    • Animal Bioscience
    • /
    • 제35권9호
    • /
    • pp.1367-1378
    • /
    • 2022
  • Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

동물성 부산물 사료 세 종류에 대한 열처리가 조단백질의 반추위내 분해특성 및 하부장기내 이용성에 미치는 영향 (Effects of Heat Treatment of Three Animal by-products on Ruminal Degradation Characteristics and Intestinal Availability of Crude Protein)

  • 문여황;이상철;김병기
    • Journal of Animal Science and Technology
    • /
    • 제44권1호
    • /
    • pp.105-112
    • /
    • 2002
  • 동물성 부산물 사료(우모분, 우지박, 내장분)단백질의 반추위내 분해특성과 하부장기내 이용성에 대한 열처리 효과를 구명하기 위하여 반추위와 십이지장에 누관이 장착된 Holstein 건유우 3두를 공시하였다. 시험사료에 대한 열처리는 149$^{\circ}C$가 유지되는 oven에서 4시간동안 처리한 후, 1 mm체를 통과시켰다. 시험사료의 반추위내 분해특성은 발효시간별 분해율에서 비선형회귀식을 유도하여 구하였고, 사료단백질의 하부장기내 이용성은 mobile nylon bag기법으로 추정되었다. 농후사료와 orchard grass를 60:40의 비율로 급여하였으며, 물과 mineral block은 자유섭취토록 하였다. 조단백질의 반추위내 유효분해도(k=0.05) 및 하부장기내 소실율에 있어서 우모분은 각각 30.2% 및 56.2%, 우지박은 75.0% 및 18.6% 그리고 내장분은 56.4% 및 37.9%였다. 시험사료에 대한 열처리효과에 있어서 조단백질의 반추위내 유효분해도는 우모분과 내장분은 증가하였으나 우지박은 감소되었고(P$<$0.05), 하부장기내 조단백질 소실율에서는 우지박은 증가된 반면, 우모분과 내장분은 감소되어(P$<$0.05) 상반되는 결과를 나타내었다. 반추위 미분해 사료단백질의 하부장기내 이용율은 우모분, 우지박 및 내장분에 대해서 각각 80.4%, 83.8% 및 86.9%였으며, 열처리를 함으로써 우모분과 우지박은 각각 94.0% 및 91.3%로 향상되었으나, 내장분은 76.5%로 낮아졌다(P$<$0.05).

할로겐 화합물의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향 (Effects of Halogenated Compounds on in vitro Fermentation Characteristics in the Rumen and Methane Emissions)

  • 황희순;옥지운;이신자;추교문;김경훈;오영균;이상석;이성실
    • 생명과학회지
    • /
    • 제22권9호
    • /
    • pp.1187-1193
    • /
    • 2012
  • 본 연구는 할로겐 화합물의 첨가가 in vitro 상의 반추위 발효성상과 메탄생성에 미치는 영향에 대한 효과를 규명하고자 실시하였다. Italian rye grass 및 배합사료를 6:4의 비율로 급여한 반추위 cannula가 시술된 홀스타인에서 반추위액을 채취하여 사용하였고, 채취된 반추위액은 분쇄된 timothy (대조구; C)에 bromochloromethane (BCM구), 2-Bromoethanesulfonic acid (BES구), 3-Bromopropanesulfonic acid (BPS구), chloroform (CLF구) 및 Pyromellitic diimide (PMDI구)의 5가지 할로겐 화합물을 각각 1 ppm씩 첨가하여 in vitro 배양하였다. pH는 6.72에서 6.25 정도로 배양시간이 경과함에 따라 낮아지는 경향을 나타내었고, 배양 48시간에는 처리구간 차이가 없었다. 배양 48시간 후의 총 가스 발생량은 처리구간 유의적인(p<0.05) 차이는 없었고, BPS구를 제외한 모든 처리구에서의 메탄 발생량은 대조구에 비해 유의적으로(p<0.05) 감소하였다. 배양 12시간에서의 총 휘발성 지방산 및 propionic acid의 발생량은 처리구가 대조구에 비해 유의적으로(p<0.05) 높았다. 본 실험의 결과, 할로겐 화합물의 첨가는 반추위 내의 pH, 건물 소화율, 미생물 수 및 총 가스 발생량의 발효 성상에는 영향을 주지 않으면서 메탄의 발생량이 감소 되었다. 실험 결과를 종합해 보면, 할로겐 화합물 첨가는 반추위 내 pH, 가스 발생량, 반추위 미생물 성장량 및 propionic acid 모두 증가하였으며, 반추위내 메탄생성을 억제하였다. 앞으로 할로겐화합물과 다른 메탄억제 물질과 혼합하여 반추위 내 메탄생성 억제에 관한 구체적인 연구가 필요한 것으로 생각된다.

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.

In Situ Dry Matter, Nitrogen and Phosphorous Disappearance of Different Feeds for Ruminants

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권6호
    • /
    • pp.793-799
    • /
    • 2002
  • Four feeds, three concentrates (rice bran, soybean meal and flaked corn) and one forage (corn silage) were incubated in four ruminally fistulated Holstein steers over three one week periods in a 3${\times}$4 incomplete latin square design where steers served as blocks and feeds as treatment. The objectives of the study were to investigate in situ DM, N and P degradability characteristics of feeds in order to assess availability of these nutrients by ruminants. In each period, all feeds were incubated in quadruplets (corn silage in triplicates) in the rumen of each steer in a reverse order for 3, 6, 9, 12, 18, 24 and 48 h. The DM 'a' fraction was higher and lower (p<0.001) in corn silage and rice bran respectively. Although corn silage contained the lowest (p<0.01) DM 'b' fraction, flaked corn contained the highest. Rate of DM degradation of flaked corn and corn silage were half (p<0.05) of the rate of DM degradation of either rice bran or soybean meal. Potential or effective DM degradability (p<0.05 to 0.001) at various passage rates were the lowest for rice bran and the highest for soybean meal. Corn silage N 'a' and 'b' was the highest and lowest, respectively (p<0.01). N 'c' of corn silage and rice bran was higher (p<0.001) than other feeds. Potential N degradability was the lowest in flaked corn (p<0.05). P 'a' was high (p<0.01) for corn silage and rice bran. P 'b' fraction was very high (p<0.001) in soybean meal but was absent in corn silage. Availability of DM (p<0.01 or 0.001), N (p<0.001) and P (p<0.05) differed between feeds at various passage rates except P availability at k=0.02 per h (p>0.05). The results demonstrate that the availability of DM, N and P by ruminants depends on feed as well as categories of animal.