DOI QR코드

DOI QR Code

Effects of Halogenated Compounds on in vitro Fermentation Characteristics in the Rumen and Methane Emissions

할로겐 화합물의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향

  • Hwang, Hee-Soon (Division of Applied Life Science (BK21 program), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ok, Ji-Un (Animal Nutrition Team, National Institute of Animal Science, RDA) ;
  • Lee, Shin-Ja (Department of Animal Science, Gyeongbuk Provincial College) ;
  • Chu, Gyo-Moon (Swine Science & Technology Center, Gyeongnam National University of Science and Technology) ;
  • Kim, Kyoung-Hoon (Animal Nutrition Team, National Institute of Animal Science, RDA) ;
  • Oh, Young-Kyoon (Animal Nutrition Team, National Institute of Animal Science, RDA) ;
  • Lee, Sang-Suk (Department of Animal Science & Biotechnology, Sunchon National University) ;
  • Lee, Sung-Sill (Division of Applied Life Science (BK21 program), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 황희순 (경상대학교 응용생명과학부(BK21 program) & 농업생명과학연구원) ;
  • 옥지운 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 이신자 (경북도립대학 축산과) ;
  • 추교문 (경남과학기술대학교 양돈과학기술센터) ;
  • 김경훈 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 오영균 (농촌진흥청 국립축산과학원 영양생리팀) ;
  • 이상석 (순천대학교 동물자원과학과) ;
  • 이성실 (경상대학교 응용생명과학부(BK21 program) & 농업생명과학연구원)
  • Received : 2012.06.01
  • Accepted : 2012.08.07
  • Published : 2012.09.30

Abstract

This study was conducted to evaluate effects of halogenated compounds on in vitro rumen fermentation characteristics and methane emissions. A fistulated Holstein cow of 650 kg body weight was used as a donor of rumen fluid. Five kinds of halogenated compounds (bromochloromethane (BCM), 2-bromoethane sulfonic acid (BES), 3-bromopropanesulfonic acid (BPS), chloroform (CLF), and pyromellitic diimide (PMDI) known to inhibit methyl-coenzyme M reductase activity were added to an in vitro fermentation incubated with rumen fluid. The microbial population including bacteria, protozoa, and fungi were enumerated, and gas production including methane and fermentation characteristics were observed in vitro. The pH values ranged from 6.25 to 6.72 in all the treatments, and these showed a similar level at 48 hr. The total gas production in the treatments showed a similar pattern with C at 48 hr, whereas methane production in the treatments was lower (p<0.05) than C. Concentrations of total volatile fatty acids (VFAs) and propionic acid were higher (p<0.05) in the treatments than in C at 12 hr. Therefore, halogenated compounds (BCM, BES, BPS, CLF, and PMDI) inhibited in vitro methane emissions by inhibiting methanogens in the rumen. Further studies on safety are needed.

본 연구는 할로겐 화합물의 첨가가 in vitro 상의 반추위 발효성상과 메탄생성에 미치는 영향에 대한 효과를 규명하고자 실시하였다. Italian rye grass 및 배합사료를 6:4의 비율로 급여한 반추위 cannula가 시술된 홀스타인에서 반추위액을 채취하여 사용하였고, 채취된 반추위액은 분쇄된 timothy (대조구; C)에 bromochloromethane (BCM구), 2-Bromoethanesulfonic acid (BES구), 3-Bromopropanesulfonic acid (BPS구), chloroform (CLF구) 및 Pyromellitic diimide (PMDI구)의 5가지 할로겐 화합물을 각각 1 ppm씩 첨가하여 in vitro 배양하였다. pH는 6.72에서 6.25 정도로 배양시간이 경과함에 따라 낮아지는 경향을 나타내었고, 배양 48시간에는 처리구간 차이가 없었다. 배양 48시간 후의 총 가스 발생량은 처리구간 유의적인(p<0.05) 차이는 없었고, BPS구를 제외한 모든 처리구에서의 메탄 발생량은 대조구에 비해 유의적으로(p<0.05) 감소하였다. 배양 12시간에서의 총 휘발성 지방산 및 propionic acid의 발생량은 처리구가 대조구에 비해 유의적으로(p<0.05) 높았다. 본 실험의 결과, 할로겐 화합물의 첨가는 반추위 내의 pH, 건물 소화율, 미생물 수 및 총 가스 발생량의 발효 성상에는 영향을 주지 않으면서 메탄의 발생량이 감소 되었다. 실험 결과를 종합해 보면, 할로겐 화합물 첨가는 반추위 내 pH, 가스 발생량, 반추위 미생물 성장량 및 propionic acid 모두 증가하였으며, 반추위내 메탄생성을 억제하였다. 앞으로 할로겐화합물과 다른 메탄억제 물질과 혼합하여 반추위 내 메탄생성 억제에 관한 구체적인 연구가 필요한 것으로 생각된다.

Keywords

References

  1. Abe, M., Shibui, H. and Kumeno, F. 1972. Improved method for counting rumen protozoa. Jap. J. Zootech. Sci. 43,535.
  2. Achtnich, C., Bak, F. and Conrad, R. 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fertil. Soils 19, 65-72. https://doi.org/10.1007/BF00336349
  3. Alperin, M. J. and Reedurgh, W. S. 1985. Inhibition experiments on anaerobic methance oxidation. Appl. Environ. Microbiol. 50, 940-945.
  4. Balch, W. D. and Wolfe, R. S. 1979. Specificity and biological distribution of coenzyme M (2-mercaptoethane sulfonic acid). J. Bacteriol. 137, 256-263.
  5. Chin, K. J. and Conrad, R. 1995. Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol. Ecol. 18, 85-102. https://doi.org/10.1111/j.1574-6941.1995.tb00166.x
  6. Chu, G. M., Lee, S. J., Jeong, H. S. and Lee, S. S. 2011. Efficacy of probiotics from anaerobic microflora with prebiotics on growth performance and noxious gas emission in growing pigs. Anim. J. Sci. 82, 282-290. https://doi.org/10.1111/j.1740-0929.2010.00828.x
  7. Czerkawski, J. W., Christie, W. W., Breckenridge, G. and Hunter, M. L. 1975. Changes in the rumen metabolism of sheep given increasing amounts of linseed oil in their diet. Br. J. Nutr. 34, 25-44.
  8. DeGraaf, W., Wellsbury, P., Parkes, R. J. and Cappenberg, T. E. 1996. Comparison of acetic acid turnover in methanogenic and sulfate-reducing sediments by radiolabeling and stable isotope labeling and by use of specific inhibitors: evidence for isotopic exchange. Appl. Environ. Microbiol. 62, 772-777.
  9. Dehority, B. A. and Scott, H. W. 1967. Extent of cellulose and hemicellulose digestion in various forage by pure cultures of rumen bacteria. J. Dairy Sci. 50, 1136-1141. https://doi.org/10.3168/jds.S0022-0302(67)87579-9
  10. Dong, Y., Bae, H. D., McAllister, T. A., Mathison, G. W. and Cheng, K. J. 1997. Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can. J. Anim. Sci. 77, 269-278. https://doi.org/10.4141/A96-078
  11. Duncan, D. B. 1995. Multiple range and multiple F test. Biometrics 11, 1-6.
  12. Fedorah, P. M. and Hrudey, S. E. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ. Tech. Lett. 4, 268.
  13. Finlay, B. J., Esteban, G., Clarke, Ken J., Williams, Alan G., MartinEmbley, T. and Hirt, R. R. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117, 157-162. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  14. Goel, G., Makkar, H. P. S. and Becker, K. 2009. Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations. Br. J. Nutr. 101, 1484-1492. https://doi.org/10.1017/S0007114508076198
  15. Hart, K. J., Yanez-ruiz, D. R., Duval, S. M., McEwan, N. R. and Newbold, C. J. 2008. Plant extract to manipulate rumen fermentation. Anim. Feed Sci. Technol. 147, 8-35. https://doi.org/10.1016/j.anifeedsci.2007.09.007
  16. Hungate, R. E. 1966. The rumen and it's microbes. pp. 92-446, Academic press, NY.
  17. IPCC (Intergovernmental Panel on Climate Change). 1992. Climate Change 1992. The supplementary report to the IPCC Scientific Assessment. pp. 200, In Houghton, J. T., Callander, B. A. and Varney, S. K. (eds.), Cambridge University Press, Cambridge, UK.
  18. Johnson, E. D., Wood, A. S., Stone, J. B. and Moran, E. T. 1972. Some effects of methane inhibition in ruminants (steers). Can. J. Anim. Sci. 52, 703-712. https://doi.org/10.4141/cjas72-083
  19. Jones, J. G. and Simon, B. M. 1985. Interaction of acetogens and methanogens in anaerobic freshwater sediments. Appl. Environ. Microbiol. 49, 944-948.
  20. Lovely, D. R. and Klug, M. J. 1982. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 43,552-560.
  21. Lowe, S. E., Theodorou, M. K., Trinci, A. P. J. and Hespell, R. B. 1985. Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. J. Gen. Microbiol. 131, 2225-2229.
  22. Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76, 3123-3132.
  23. McCrabb, G. J., Berger, K. T., Magner, T., May, C. and Hunter, R. A. 1997. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects of growth. Aust. J. Agric. Res. 48, 323-329. https://doi.org/10.1071/A96119
  24. Moss, A. R., Jouany, J. P. and Newbold, J. 2000. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 49, 231-253. https://doi.org/10.1051/animres:2000119
  25. Moore, J. E. 1970. Procedure for two-stage in vitro digestion of forage. In Harrison, S. E. (ed.). Nutrition research technique for domestic and wild animals. Utah State Univ., Logan, UT. USA.
  26. Nollet, L., Demeyer, D. and Verstraete, W. 1997. Effect of 2-bromo- ethanesulfonic acid and Peptostreptococcum productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl. Environ. Microbiol. 63, 194-200.
  27. Nozoe, T. 1997. Effects of methanogenesis and sulfate-reduction on acetogenetic oxidation of propionic acid and further decomposition of acetic acid in paddy soil. Soil Sci. Plant Nut. 43,1-10. https://doi.org/10.1080/00380768.1997.10414709
  28. Oremland, R. S. and Capone, D. G. 1988. Use of 'specific' inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10, 285-383. https://doi.org/10.1007/978-1-4684-5409-3_8
  29. SAS. 1996. SAS User Guide. Release 6.12 edition. SAS Inst. Inc. Cary NC. USA.
  30. Sawyer, M. S., Hoover, W. H. and Sniffen, C. J. 1974. Effects of a ruminal methane inhibitor on growth and energy metabolism in the ovine. J. Anim Sci. 38, 908-914.
  31. Thebrath, B., Mayer, H. P. and Conrad, R. 1992. Bicarbonatedependent production and methanogenic consumption of acetic acid in anoxic paddy soil. FEMS Microbiol. Ecol. 86, 295-302. https://doi.org/10.1111/j.1574-6968.1992.tb04821.x
  32. Trei, J. E., Parish, R. C. and Singh, Y. K. 1971. Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. J. Dairy Sci. 54, 536-540. https://doi.org/10.3168/jds.S0022-0302(71)85882-4
  33. Ungerfeld, E. M., Rust, S. R., Jain, M. K. and Burnett, R. 2002. Some miscellaneous inhibitors of rumen methanogenesis in vitro. In Beef Cattle, Sheep and Forage Systems. Research and Demonstration Report 581, 113-122. East Lansing, MI: Michigan State University.
  34. Wuebbles, D. J. and Hayhoe, K. 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57, 177-210. https://doi.org/10.1016/S0012-8252(01)00062-9
  35. Zhang, C. M., Guoa, Y. Q., Yuan, Z. P., Wu, Y. M., Wang, J. K., Liu, J. X. and Zhub, W. Y. 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Technol. 146, 259-269. https://doi.org/10.1016/j.anifeedsci.2008.01.005
  36. Zinder, S. H., Anguish, T. and Cardwell, S. C. 1984. Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetic acid in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 47, 1343-1345.

Cited by

  1. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01122
  2. Effect of Asteraceae Plant Extracts on In vitro Ruminal Fermentation Characteristics vol.52, pp.5, 2018, https://doi.org/10.14397/jals.2018.52.5.39