• Title/Summary/Keyword: Dry matter degradation

Search Result 141, Processing Time 0.026 seconds

A COMPARATIVE STUDY OF THE PROTECTION OF DHAINCHA (Sesbania aculeata) SEED MEAL AND FISH MEAL FROM RUMEN DEGRADATION USING NYLON BAG TECHNIQUE

  • Hussain, M.;Chowdhury, B.;Siddiqua, A.;Routh, C.K.;Saadullah, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.197-203
    • /
    • 1993
  • The protection of dry matter and nitrogen from rumen degradation of dhaincha seed (Sesbania aculeate) meal was studied using nylon bag technique. The dhaincha seed meal was subjected to various heat treatments that included oven drying, autoclaving and boiling. Similar experiment was conducted with fish meal as reference for comparison. The oven-dried dhaincha meal was found to retain more dry matter and nitrogen than was found boiled or autoclaved meal. While autoclaving appeared to improve nitrogen and dry matter retention to some extent, boiling seemed to cause more loss of dry matter from nylon bag. Heat treatment caused high retention of nitrogen by fish meal. The calculated effective protein degradation was 80.4% and 83.2% for the oven dried fish meal and dhaincha seed meal whereas same values were 74.2% and 86.7% for autoclaved fish and dhaincha seed meal respectively at the outflow rate of 4.4% per hour. The in vitro study revealed higher digestibility for heat treated samples by pepsin. The dry matter, nitrogen and ash content of dhaincha seed meal were 85.93%, 5.93% and 7.31% respectively.

Ruminal Behavior of Protein and Starch Free Organic Matter of Lupinus Albus and Vicia Faba in Dairy Cows

  • Yu, P.;Leury, B.J.;Egan, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.974-981
    • /
    • 2002
  • Faba beans (vicia faba) (FB) and lupin seeds (Lupinus Albus) (LS) were dry roasted at three temperatures (110, 130, $150^{\circ}C$) for 15, 30 or 45 min to determine the effects of dry roasting on rumen degradation of crude protein and starch free organic matter ($^{PSF}OM$). Rumen degradation characteristics of $^{PSF}OM$ were determined by the nylon bag incubation technique in dairy cows fed 60% hay and 40% concentrate. Measured characteristics of $^{PSF}OM$ were undegradable fraction (U), degradable fraction (D), soluble fraction (S), lag time (T0), and the rate of degradation (Kd). Based on the measured characteristics, rumen availability ($RA^{PSF}OM$) and bypass $^{PSF}OM$ ($B^{PSF}OM$) were calculated. Dry roasting did not have a greater impact on rumen degradation characteristics of $^{PSF}OM$ (p>0.05). S varied from 32.1 (raw) to 30.0, 27.8, 30.8% (LS) and 15.4 (raw) to 14.4, 20.8, 20.9% (FB); D varied from 65.4 (raw) to 66.3, 66.9, 55.9% (LS) and 54.9 (raw) to 55.0, 51.0, 64.7% (FB); U varied from 2.6 (raw) to 7.3, 7.0, 7.7% (LS) and 29.7 (raw) to 30.6, 28.2, 14.4% (FB); Kd varied from 6.0 (raw) to 7.3, 7.0, 7.7% (LS) and 22.4 (raw) to 24.4, 21.1, 7.9% (FB); $B^{PSF}OM$ varied from 35.5 (raw) to 33.8, 36.6, 38.2% (LS) and 41.3 (raw) to 41.5, 39.7, 47.6% (FB) at 110, 130 and $150^{\circ}C$, respectively. Therefore dry roasting did not significantly affect $RA^{PSF}OM$, which were 353.7, 367.9, 349.6, 336.9 (g/kg DM) (LS) and 12.82, 127.0, 133.7, 117.1 (g/kg DM) (FB) at 110, 130 and $150^{\circ}C$, respectively. These results alone with our previously published reports indicate dry roasting had the differently affected pattern of rumen degradation characteristics of various components in LS and FB. It strongly increased bypass crude protein (BCP) and moderately increased starch (BST) with increasing temperature and time but least affected $^{PSF}OM$. Such desirable degradation patterns in dry roasted LS and FB might be beneficial to the high yielding cows which could use more dry roasted $^{PSF}OM$ as an energy source for microbial protein synthesized in the rumen and absorb more amino acids and glucose in the small intestine.

Effect of Fungal Elimination on Bacteria and Protozoa Populations and Degradation of Straw Dry Matter in the Rumen of Sheep and Goats

  • Li, D.B.;Hou, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.70-74
    • /
    • 2007
  • An in vitro study was carried out to investigate the differences in rumen microbes and fiber degradation capacity between sheep and goats. Three local male sheep and three Inner Mongolia male cashmere goats (aged 1.5 to 2 years; weight 25.0 to 32.0 kg) were each fitted with a permanent rumen cannula used to provide rumen fluid. Cycloheximide was used to eliminate rumen anaerobic fungi. The results showed that the quantities of fungal zoospores in the culture fluid of the control group were significantly greater in the sheep than in the goats; however, bacteria and protozoa counts were significantly higher in goats than in sheep. The digestibility of straw dry matter did not differ significantly between the two species before elimination of fungi, but tended to be higher for sheep (55.4%) than for goats (53.3%). The results also indicated that bacteria counts increased significantly after elimination of anaerobic fungi; however, the digestibility of straw dry matter significantly decreased by 12.1% and 8.6% for sheep and goats respectively. This indicated that the anaerobic fungi of the rumen played an important role in degradation of fiber.

Comparison of In situ Dry Matter Degradation with In vitro Gas Production of Oak Leaves Supplemented with or without Polyethylene Glycol (PEG)

  • Ozkan, C. Ozgur;Sahin, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1120-1126
    • /
    • 2006
  • Dry matter (DM) degradation of leaves from Quercus cercis, Quercus libari, Quercus branti, and Quercus coccifera was determined using two different techniques: (i) in vitro gas production and (ii) the nylon bag degradability technique. In vitro gas production in the presence or absence of PEG and in situ DM disappearance were measured at 3, 6, 12, 24, 48, 72 and 96 h. In situ and in vitro DM degradation kinetics were described using the equation y = a+b ($1-e^{-ct}$). At all incubation times leaves from Quercus branti incubated with or without PEG gave significantly higher gas production than the other oak leaves except for 3 and 6 h incubation when leaves from Quercus branti without PEG supplementation only gave higher gas production than Quercus cercis and Quercus coccifera. At all incubation times except at 3, 6 and 12 h the DM disappearance from Quercus branti was significantly higher than the other species. Generally, PEG supplementation considerably increased the gas production at all incubation times and estimated parameters such as gas production rate ($c_{gas}$), gas production (ml) from the quickly soluble fraction ($a_{gas}$), gas production (b) from the insoluble fraction, potential gas production (a+b). However, all oak leaves did not give the same response to the PEG supplementation. Although the increase in gas production at 96 h incubation time was 8.9 ml for Quercus libari the increase was 5.5 ml for Quercus coccifera. It was concluded that except at early incubation times the relationships between the two methodologies seem to be sufficiently strong to predict degradability parameters from gas production parameters obtained in the presence or absence of PEG.

In vitro Nutrient Digestibility, Gas Production and Tannin Metabolites of Acacia nilotica Pods in Goats

  • Barman, K.;Rai, S.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • Six total mixed rations (TMR) containing 0, 4, 6, 8, 10, 12% tannin (TMR I-VI), using Accacia nilotica pods as a source of tannin, were used to study the effect of Acacia tannin on in vitro nutrient digestibility and gas production in goats. This study also investigated the degraded products of Acacia nilotica tannin in goat rumen liquor. Degraded products of tannins were identified using high performance liquid chromatography (HPLC) at different hours of incubation. In vitro digestibility of dry matter (IVDMD) and organic matter (IVOMD) were similar in TMR II, and I, but declined (p<0.05) thereafter to a stable pattern until the concentration of tannin was raised to 10%. In vitro crude protein digestibility (IVCPD) decreased (p<0.05) with increased levels of tannins in the total mixed rations. Crude protein digestibility was much more affected than digestibility of dry matter and organic matter. In vitro gas production (IVGP) was also reduced (p<0.05) with increased levels of tannins in the TMR during the first 24 h of incubation and tended to increase (p>0.05) during 24-48 h of incubation. Gallic acid, phloroglucinol, resorcinol and catechin were identified at different hours of incubation. Phloroglucinol and catechin were the major end products of tannin degradation while gallate and resorcinol were produced in traces. It is inferred that in vitro nutrient digestibility was reduced by metabolites of Acacia nilotica tannins and ruminal microbes of goat were capable of withstanding up to 4% tannin of Acacia nilotica pods in the TMR without affecting in vitro nutrient digestibility.

Determination of Nutritive Value of Wild Mustard, Sinapsis arvensis Harvested at Different Maturity Stages Using In situ and In vitro Measurements

  • Kamalak, Adem;Canbolat, Onder;Gurbuz, Yavuz;Ozkan, Cagri Ozgur;Kizilsimsek, Mustafa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1249-1254
    • /
    • 2005
  • The aim of this study was to determine the effect of maturity stage on the nutritive value of wild mustard straw in terms of chemical composition, in situ, in vitro dry matter degradability and calculated ME. The nutritive values of wild mustard, Sinapsis arvensis hays harvested at three stages were evaluated by chemical composition, in vitro gas production and in situ dry matter degradation methods. Gas production or dry matter (DM) degradation were determined at 0, 3, 6, 12, 24, 48, 72 and 96 h and their kinetics were described using the equation p = a+b(1-e$^{-ct}$). Maturity had a significant effect on both the chemical composition and degradability of wild mustard. Neutral detergent fibre (NDF) and acid detergent fibre (ADF) (p<0.001) increased with increasing maturity whereas the crude protein (CP) (p<0.001) decreased. The gas produced after 96 h incubation ranged between 64.7 and 81.5 ml per 0.200 g of dry matter. The gas production (ml) at all incubation times and estimated parameters decreased with increasing maturity of wild mustard. The gas production at all incubation times and estimated parameters (a, b (a+b), metabolizable energy (ME) and organic matter digestibility (OMD)) were negatively correlated with NDF and ADF. The DM disappearance after 96 h incubation ranged between 50.8 and 76.1%. The in situ DM disappearance at all incubation times and estimated parameters decreased with increasing maturity of wild mustard. The in situ dry matter disappearance at all incubation times and some estimated parameters (c, a, b and effective dry matter degradability (EDMD)) were negatively correlated with NDF and ADF but positively correlated with CP. The nutritive value of wild mustard continually changed as it matured. Wild mustard, harvested at the proper stage of maturity offers considerable potential as a high quality forage for ruminants during the winter feeding period. The present study showed that if higher quality forage is an objective, wild mustard should be harvested at the early flowering stage.

Roughage Energy and Degradability Estimation with Aspergillus oryzae Inclusion Using Daisy In vitro Fermentation

  • Chen, C.R.;Yu, B.;Chiou, P.W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • The aim of this study was to predict the energy value and dynamic degradation of roughage in Taiwan using the $Daisy^{(R)}$. in vitro fermentation method to provide information on one of the very important nutrients for ration formulation. The second objective was to study the effects of Aspergillus oryzae (AFE) inclusion on nutrient utilization. Three ruminal fistulated dry dairy cows were used for rumen fluid and fifteen conventional forages used in dairy cattle were collected around this island. The degradability of these feedstuffs with and without AFE ($Amaferm^{(R)}$.) treatment was measured using the $Daisy^{(R)}$. in vitro method. The roughage energy values, including TDN and NEL, were calculated according to Robinson (2000). Results from the 30 h in vitro neutral detergent fiber (NDF) degradability and predicted energy evaluations showed that alfalfa (among the forages) contained the highest degradability and energy values, Bermuda straw having the lowest. Peanut vines and corn silage contained higher energy values and the lowest value found in Pangola and Napier grasses among the locally produced forages. Pangola and Napier grasses had lower values than most imported forages except Bermuda straw. Among the by-products, wheat middling contained the highest NDF degradability, while rice bran contained the richest energy value due to its high oil content. From the dynamic dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) degradation, corn silage contained the highest effective degradation among the local forages; wheat middling (among the by-products) degraded the fastest in DM, OM, ADF and NDF and showed the highest effective degradability. AFE inclusion was inconsistent among the forages. Alfalfa hay showed significantly increased 30 h NDF degradability and energy values, Pangola hay, Napier grass and brewer's grains showed decreased degradability and energy values. AFE inclusion increased the DM, OM and NDF degradation rate in most forage, but only increased the DM degradation rate in sorghum distiller's grains, the OM degradation rate in bean curd pomace and the NDF and ADF degradation rates in soy pomace (among the by-products).

DIGESTION OF ALKALI-TREATED ALFALFA SILAGE BY GOATS

  • Nishino, N.;Ohshima, M.;Miyase, K.;Yokota, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.5-11
    • /
    • 1993
  • First crop of alfalfa (Medicago sativa L.) was harvested, wilted and ensiled with or without NaOH or $NH_3$, and fed to three rumen fistulated goats in a $3{\times}3$ Latin-square design. Each alkali treatment (2.44% of alfalfa dry matter) was made by spraying its solution prior to ensiling. Silage pH, $NH_3-N$ and butyric acid concentration were increased with each alkali addition, and NaOH-treated silage showed the lowest chemical quality. Compared with untreated silage, digestibilities of organic matter, ADF and cellulose were depressed by both alkali treatments, and the reductions in NaOH-treated silage were significant. Crude protein digestibility was also significantly decreased in NaOH-treated silage, but the goats receiving the silage excreted less nitrogen in urine than those on the other two silages. Nitrogen retention of goats was not different among the treatments. Ruminal solubility and potential degradability of dry matter and nitrogen determined with the in situ bag technique were reduced, and rate of degradation of the two components were increased by the NaOH treatment. Addition of $NH_3$ provided ruminal soluble nitrogen to the silage, but the rate of degradation was similar to that of untreated silage. These results suggest that NaOH treatment would denature the protein and reduce the susceptibility to microbial degradation in the rumen, while no positive effect of alkali treatment on fiber digestion and nitrogen utilization was observed in this study.

Effects of Cassava Leaf Meal on the Rumen Environment of Local Yellow Cattle Fed Urea-Treated Paddy Straw

  • Khang, D.N.;Wiktorsson, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1102-1108
    • /
    • 2000
  • An experiment was conducted as a Latin square design with four rumen fistulated local yellow cattle with a mean live weight of 230 kg. The treatments were: $(CLM_0)$ urea-treated rice straw ad libitum plus 1 kg cassava root meal (basal diet), $(CLM_{500})$ basal diet plus 500 g cassava leaf meal, $(CLM_{1000})$ basal diet plus 1,000 g cassava leaf meal, and $(CLM_{1500})$ basal diet plus 1,500 g cassava leaf meal. The results showed that there were differences in dry matter intake of urea-treated rice straw between treatments (p<0.05). The highest total dry matter intake was observed for treatment $CLM_{1500}$, with 2.62 kg DM/100 kg LWt/day, followed by treatments $CLM_{1000}$, $CLM_{500}$ and $CLM_0$, with 2.42, 2.00 and 1.86 kg DM/100 kg LWt/day, respectively. The ruminal ammonia concentration on treatment $CLM_{1500}$ was greater than on treatments $CLM_{1000}$, $CLM_{500}$ and $CLM_0$. There were non-significant differences in the ruminal pH among the treatments. The in sacco degradability of cassava leaf meal and cassava root meal was high, and on average 75 and 85% respectively of the DM had disappeared after 24 h of incubation. Degradation rate of urea treated rice straw was 64% after 72 h of incubation.

IN SITU RUMINAL DEGRADATION KINETICS OF FORAGES AND FEED BYPRODUCTS IN MALE NILI-RAVI BUFFALO CALVES

  • Sarwar, M.;Mahmood, S.;Abbas, W.;Ali, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.533-538
    • /
    • 1996
  • The rate and extent of digestion of dietary carbohydrates has a tremendous impact on ruminal fermentation and the productivity of the animals. The objective of the study was to determine the dry matter (DM) and neutral detergent fiber (NDF) degradabilities and rate and extent of feed byproducts (cotton seed cake, wheat bran), legumes [berseem (Egyptian clover), lucern (Medicago sativa), cowpeas (Vigna sinensis)], grasses [maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum vulgare)] and wheat straw in ruminally fistulated male buffalo calves. By using nylon bags, 10 grams sample was exposed to the ruminal fermentation for 0, 1, 2, 4, 6, 10, 16, 24, 36, 48 and 96 hours. Dry matter and NDF degradability was measured at 48 hours. Extent of DM and NDF disappearance was determined at each time point. Rates of disappearance of DM and NDF were determined by regressing the natural logarithm of the percentage of original DM and NDF remaining in the bags between 1 and 96 hours. The dry matter digestibility (DMD) of the feed byproducts (FBP) and legume forages when incubated in the rumen of male buffalo calves were greater (p < 0.05) than grasses. Extent of digestion followed similar pattern as DMD. Rate of DMD was higher in FBP than in legumes and was the lowest in the wheat straw. The NDF degradability (NDFD) of FBP, legumes and grasses did not differ, however, wheat straw had the lowest NDFD from all the feeds tested. The lowest NDFD of wheat straw may have been due to the depressing effect of lignin on fiber digestion. The FBP and legumes had higher (p < 0.05) rates and lower extents of NDF digestion than grasses.