신용리스크 관리에 해당하는 부도예측모형은 기업에 대한 신용평가라고도 볼 수 있으며 은행을 비롯한 금융기관의 신용평가모형의 기본 지식기반으로 새로운 인공지능 기술을 접목할 수 있는 유망한 분야로 손꼽히고 있다. 고도화된 모형의 실제 응용은 사용자의 수용도가 중요하나 부도예측모형의 경우, 금융전문가 혹은 고객에게 모형의 결과에 대한 설명이 요구되는 분야로 설명력이 없는 모형은 실제로 도입되고 사용자들에게 수용되기에는 어려움이 있다. 결국 모형의 결과에 대한 설명은 모형의 사용자에게 제공되는 것으로 사용자가 납득할 수 있는 설명을 제공하는 것이 모형에 대한 신뢰와 수용을 증진시킬 수 있다. 본 연구에서는 머신러닝 기반 모형에 설명력을 제고하는 방안으로 설명대상 인스턴스에 대하여 로컬영역에서의 설명을 제공하고자 한다. 이를 위해 설명대상의 로컬영역에 유전알고리즘(GA)을 이용하여 가상의 데이터포인트들을 생성한 후, 로컬 대리모델(surrogate model)로 연관규칙 알고리즘을 이용하여 설명대상에 대한 규칙기반 설명(rule-based explanation)을 생성한다. 해석 가능한 로컬 모델의 활용으로 설명을 제공하는 기존의 방법에서 더 나아가 본 연구는 부도예측모형에 이용된 재무변수의 특성을 반영하여 연관규칙으로 도출된 설명에 도메인 지식을 통합한다. 이를 통해 사용자에게 제공되는 규칙의 현실적 가능성(feasibility)을 확보하고 제공되는 설명의 이해와 수용을 제고하고자 한다. 본 연구에서는 대표적인 블랙박스 모형인 인공신경망 기반 부도예측모형을 기반으로 최신의 규칙기반 설명 방법인 Anchor와 비교하였다. 제안하는 방법은 인공신경망 뿐만 아니라 다른 머신러닝 모형에도 적용 가능한 방법(model-agonistic method)이다.
국내에는 약 100만명이 넘는 색각이상자가 있으나, 방송 및 웹에서 공급되는 디지털 콘텐츠에는 색각이상자를 위한 보조기술이 적용된 예가 드물다. 본 연구에서는 다양한 색각 특성과 장애 정도를 갖는 색각이상자들이 컴퓨터를 사용하여 자신의 색각 특성에 적합하게 그래픽 콘텐츠를 보정할 수 있는 ICC 프로파일을 생성하는 방법을 개발하였다. 적색과 녹색 계통의 색 범위에 대하여 2개의 보정규칙을 규정하여 ICC프로파일을 생성하였다. 이시하라 플레이트 10개를 대상으로 적색각, 적록색각, 녹색각 이상자 각각 1명. 1명, 2명에 대하여 시험한 결과 시험 통과율이 97.5%였다. 보정 프로파일 생성에 걸리는 시간은 시험방법에 대한 설명을 포함하여 평균 13분이 소요되어, 전문 병원에서 색각 특성을 진단하여 보정을 행하는 방법에 비하여 비교적 적은 노력과 고가의 장비의 동원이 없이, 신뢰성 있는 보정 결과를 얻을 수 있다.
이메일 사용이 보편화됨에 따라 점차 수신되는 메일의 량이 증가하고 있다. 이러한 메일 량의 증가는 사용자로 하여금 이메일을 좀더 효율적으로 분류할 수 있는 방법을 필요하게 한다. 그러나 현재의 이메일 분류는 규칙기반, 베이시안, SVM등을 이용하여 스팸메일을 필터링 하는 이원분류가 주로 연구되고 있다. 이외에도 다원분류에 대한 연구로는 클러스터링을 이용한 방법이 있으나, 이는 단순히 유사도에 의해 메일을 그룹화 하는 수준이다. 본 논문에서는 벡터모델의 유사도를 기반으로 한 자동 카테고리 생성 방법과 동적분류체계 방법을 결합하여 새로운 이메일 자동 분류 방법을 제안했다. 본 논문에서 제안한 방법은 이메일을 자동으로 다원분류하며 대량의 메일도 효율적으로 관리할 수 있다. 또한 메일을 동적으로 재분류 할 수 있게 함으로써 정확율을 높였다.
비용을 보상하는 원가규제 방식으로 알려진 투자보수율 규제 또는 총괄원가주의 규제의 경우 피규제자는 비용을 부풀리려는 유인을 갖게 마련이다. 그런데 생산공장별 원가를 규제자가 파악하고 이들 간의 경쟁을 유도하는 경우에는 단기적으로 '수인의 딜레마' 상황이 나타나 원가 과대보고와는 방향이 다른 원가 과소보고 방향으로의 비용왜곡 요인이 발생할 수 있다. 변동비 반영 전력시장의 경우 발전기의 운전시간이 늘어날수록 실제변동비와 등록변동비 간의 차이는 점점 커지게 되지만 복합화력 발전사들은 가동률과 발전량을 높게 유지하기 위해 등록변동비를 유지시키려는 전략적 선택을 할 수 있다. 그 결과 궁극적으로 수익성이 악화되고 신규설비에 대한 투자를 유도하지 못하며 설비예비율은 적정 이하로 떨어지는 '수인의 딜레마' 상황이 나타날 수 있다. 이에 따라 발전사들의 자기변동비가 실제 효율과 유사하도록 관련 규정을 개정할 필요가 있다.
Categorization is an important human function used to process different stimuli. It is also one of the most important factors affecting measurement of a person's classification ability. Explicit categorization, the representative system by which categorization ability is measured, can verbally describe the categorization rule. The purpose of this study was to develop a prediction model for categorization ability as it relates to the classification process of living organisms using fMRI. Fifty-five participants were divided into two groups: a model generation group, comprised of twenty-seven subjects, and a model verification group, made up of twenty-eight subjects. During prediction model generation, functional connectivity was used to analyze temporal correlations between brain activation regions. A classification ability quotient (CQ) was calculated to identify the verbal categorization ability distribution of each subject. Additionally, the connectivity coefficient (CC) was calculated to quantify the functional connectivity for each subject. Hence, it was possible to generate a prediction model through regression analysis based on participants' CQ and CC values. The resultant categorization ability regression model predictor was statistically significant; however, researchers proceeded to verify its predictive ability power. In order to verify the predictive power of the developed regression model, researchers used the regression model and subjects' CC values to predict CQ values for twenty-eight subjects. Correlation between the predicted CQ values and the observed CQ values was confirmed. Results of this study suggested that explicit categorization ability differs at the brain network level of individuals. Also, the finding suggested that differences in functional connectivity between individuals reflect differences in categorization ability. Last, researchers have provided a new method for predicting an individual's categorization ability by measuring brain activation.
The efficiency of thesytem depends upon an accurate extraction capability of index terms in the system of information search or in that of automatic index. Therefore, extraction of accurate index terms is of utmost importance. This report presents the generation methods of composition noun for efficient index term extraction by using words of high frequency appearance, so that the right documents can be found during information search. For the sake of presentation of this method, index terms of composition noun shall be extracted by applying the rule of composition and disintegration to the nouns with high frequency of appearance in the documents, such as those with upper 30%∼40% of frequency ratio. In addition, for he purpose of effecting an inspection of validity in relation to a composition of high frequency nouns such as those with upper 30∼40% of frequency ratio as presented in this report, it proposes an adequate frquency ratio during noun composition. Based upon the proposed application, in this short documents with less than 300 syllables, low frequency omissions were noticed, when composed with nouns in the upper 30% of frequency ratio; whereas the documents with more than 30 syllables, when composed with nouns in he upper 40% of frequency ration, had a considerable reduction of low frequency omissions. Thus, total number of index terms has decreased to 57.7% of these existing and an accurate extraction of index terms with an 85.6% adequacy ratio became possible.
일반적으로 현장 플랜트는 모든 장치를 인력으로 직접 검사할 수 없을 정도로 매우 크다. 따라서 장치장의 사고를 사전에 방지하기 위한 자동화된 시스템은 필수적이다. 그러나 기존의 감시 시스템에서는 시각화 및 센서 값을 관찰하기 위한 모듈을 각 상황에 맞게 프로그래머가 따로 개발해야하는 단점이 있다. 이러한 문제점을 해결하기 위해 우리는 구성할 시스템을 메타 기술파일로 서술할 수 있는 규칙기반 언어를 정의하고, 이 메타 기술파일로부터 감시시스템이 자동으로 생성되는 새로운 시스템 생성도구를 개발하였다. 이를 통해 관리자는 메타 기술파일을 이용하여 각 현장에 맞는 감시 시스템을 빠르고 즉각적으로 생성할 수 있다. 개발한 생성 도구를 유수탱크 플랜트 설비에 적용해서 다양한 형식의 모니터링 시스템을 생성할 수 있음을 실험에서 보였다.
In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.
정보보안 응용을 위한 참난수 발생기(true random number generator; TRNG)의 하드웨어적 구현에 대하여 기술한다. 셀룰러 오토마타에 무작위 천이규칙을 도입하고, 매 시간단계마다 다른 천이규칙이 적용되는 새로운 방법을 제안하였다. 설계된 참난수 발생기를 Spartan-6 FPGA 소자에 구현하고, 100 MHz 동작 주파수에서 난수 생성동작을 검증하였다. FPGA 소자에 구현된 참난수 발생기로부터 2×107 비트의 난수 데이터를 추출하여 NIST SP 800-22 테스트를 통해 생성된 난수 데이터의 무작위 성능을 검증하였으며, 15개의 테스트 항목 모두 기준을 충족하는 것으로 확인되었다. 본 논문의 참난수 발생기는 Spartan-6 FPGA 소자의 139 슬라이스로 구현되었고, 100 MHz 동작 주파수에서 600 Mbps의 참난수 생성 성능을 갖는다.
Korea has been at the forefront of green growth initiatives. In 2008, the government declared the new vision toward 'low-carbon society and green growth'. The government subsidies and Feed-in Tariff (FIT) increased domestic usage of solar power by supplying photovoltaic housing and photovoltaic generation systems. Since 2000, solar power industry has been the world's fastest growing source with the annual growth rate of 52.5%. Especially, BIPV(Building Integrated Photovoltaic) systems are capturing a growing portion of the renewable energy market due to several reasons. BIPV consists of photovoltaic cells and modules integrated into the building envelope such as a roof or facades. By avoiding the cost of conventional materials, the incremental cost of photovoltaics is reduced and its life-cycle cost is improved. When it comes to atypical building, numerous problems occur because PV modules are flat, stationary, and have its orientation determined by building surface. However, previous studies mainly focused on improving installations of solar PV technologies on ground and rooftop photovoltaic array and developing prediction model to estimate the amount of produced electricity. Consequently, this paper discusses the problem during a planning and design stage of BIPV systems and suggests the method to select optimal design of the systems by applying the national strategy and economic policies. Furthermore, the paper aims to develop BIM tool based on the engineering knowledge from experts in order for non-specialists to design photovoltaic generation systems easily.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.