• Title/Summary/Keyword: Rule Items

Search Result 247, Processing Time 0.023 seconds

A Study for Statistical Criterion in Negative Association Rules Using Boolean Analyzer

  • Lee, Keun-Woo;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.569-576
    • /
    • 2008
  • Association rule mining searches for interesting relationships among items in a given database. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. Association rule is an interesting rule among purchased items in transaction, but the negative association rule is an interesting rule that includes items which are not purchased. Boolean Analyzer is the method to produce the negative association rule using PIM. But, PIM is subjective. In this paper, we present statistical objective criterion in negative association rules using Boolean Analyzer.

  • PDF

A Study for Statistical Criterion in Negative Association Rules Using Boolean Analyzer

  • Shin, Sang-Jin;Lee, Keun-Woo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.145-151
    • /
    • 2006
  • Association rule mining searches for interesting relationships among items in a given database. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule support and confidence and lift. Association rule is an interesting rule among purchased items in transaction, but the negative association rule is an interesting rule that includes items which are not purchased. Boolean Analyzer is the method to produce the negative association rule using PIM. But PIM is subjective. In this paper, we present statistical objective criterion in negative association rules using Boolean Analyzer.

  • PDF

A Review on Track Design Standards for Selection of Rule Items for Railway BIM (철도 BIM의 룰 항목 도출을 위한 설계기준 검토)

  • Park, Su-yeul;Bae, Young-hoon;Park, Young-Kon;Kim, Seok
    • Journal of KIBIM
    • /
    • v.12 no.3
    • /
    • pp.30-38
    • /
    • 2022
  • Railway is compsed in various components, such as subgrade, track bed, sleeper, rail, and overhead line, on a linear space. Therefore, comprehensive work for various design standards and guidelines is required when designing a railway facility. For this reason, much time and effort are required to review the relevant design standards and guidelines. While, automatic legal check system for BIM models has been developed in the architectural engineering, it has not been developed in the railway engineering. This study reviews the korean design standard and the korean code for railway engineering, and suggests some rule items of logical information. Comparing the suggested rule items to the railway BIM library, items of logical information and additional attribute information are obtained. The analysis results of railway design standards and BIM library presented in this study would be utilized for defining rule-set items that is essential for development of the automatic legal check system for railway BIM models.

Target Marketing using Inverse Association Rule (역 연관규칙을 이용한 타겟 마케팅)

  • 황준현;김재련
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.241-249
    • /
    • 2002
  • Making traditional plan of target marketing based on Association Rule has brought restriction to obtain the target of marketing. This paper is to present Inverse Association Rule as a new association rule for target marketing. Inverse Association Rule does not use information about relation between items that customers purchase like Association Rule, but use information about relation between items that customers do not pruchase. By adding Inverse Association Rule to target marketing, we generate new marketing rule to look for new target of marketing. From new marketing rule, this paper is to show direct marketing about target item and indirect marketing about another item associated with target item to sell target item. The reason is that sales of the item associated with target item have an influence on sales of target item.

  • PDF

Weighted Association Rule Discovery for Item Groups with Different Properties (상이한 특성을 갖는 아이템 그룹에 대한 가중 연관 규칙 탐사)

  • 김정자;정희택
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1284-1290
    • /
    • 2004
  • In market-basket analysis, weighted association rule(WAR) discovery can mine the rules which include more beneficial information by reflecting item importance for special products. However, when items are divided into more than one group and item importance for each group must be measured by different measurement or separately, we cannot directly apply traditional weighted association rule discovery. To solve this problem, we propose a novel methodology to discovery the weighted association rule in this paper In this methodology, the items should be first divided into sub-groups according to the properties of the items, and the item importance is defined or calculated only with the items enclosed to the sub-group. Our algorithm makes qualitative evaluation for network risk assessment possible by generating risk rule set for risk factor using network sorority data, and quantitative evaluation possible by calculating risk value using statistical factors such as weight applied in rule generation. And, It can be widely used for new model of more delicate analysis in market-basket database in which the data items are distinctly separated.

A Study on the Rule Development for BIM-based Automatic Checking in a Duct System (덕트설비의 BIM 기반 자동검토를 위한 규칙개발에 관한 연구)

  • Song, Jong-Kwan;Cho, Geun-Ha;Ju, Ki-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.631-639
    • /
    • 2013
  • This study derives quality checking items in Building Mechanical Systems Design Criteria, and suggests quality criteria to review BIM models in the duct system of an air conditioning system for rule-based automatic checking. First, components for the duct system of an air conditioning system were reviewed, and the quality checking items were drawn from Building Mechanical Systems Design Criteria, through assessment according to object, attribute and relationship composing the BIM model. Second, quality checking types were derived, by analyzing the quality checking items and Rule set of the Solibri Model Checker. Finally, methods of algorithm functioning for checking the BIM models for mechanical systems in computers were drawn, and Elements to comprise the quality checking criteria (rule) were suggested. This study means that that checking items are derived from domestic criteria, and a way for the development process of determining quality checking criteria (rules) is suggested.

Mining Association Rule on Service Data using Frequency and Weight (빈발도와 가중치를 이용한 서비스 연관 규칙 마이닝)

  • Hwang, Jeong Hee
    • Journal of Digital Contents Society
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 2016
  • The general frequent pattern mining considers frequency and support of items. To extract useful information, it is necessary to consider frequency and weight of items that reflects the changing of user interest as time passes. The suitable services considering time or location is requested by user so that the weighted mining method is necessary. We propose a method of weighted frequent pattern mining based on service ontology. The weight considering time and location is given to service items and it is applied to association rule mining method. The extracted rule is combined with stored service rule and it is based on timely service to offer for user.

A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining (연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.127-141
    • /
    • 2017
  • Advances in Internet technologies and the proliferation of mobile devices enabled consumers to approach a wide range of goods and services, while causing an adverse effect that they have hard time reaching their congenial items even if they devote much time to searching for them. Accordingly, businesses are using the recommender systems to provide tools for consumers to find the desired items more easily. Association Rule Mining (ARM) technology is advantageous to recommender systems in that ARM provides intuitive form of a rule with interestingness measures (support, confidence, and lift) describing the relationship between items. Given an item, its relevant items can be distinguished with the help of the measures that show the strength of relationship between items. Based on the strength, the most pertinent items can be chosen among other items and exposed to a given item's web page. However, the diversity of the measures may confuse which items are more recommendable. Given two rules, for example, one rule's support and confidence may not be concurrently superior to the other rule's. Such discrepancy of the measures in distinguishing one rule's superiority from other rules may cause difficulty in selecting proper items for recommendation. In addition, in an online environment where a web page or mobile screen can provide a limited number of recommendations that attract consumer interest, the prudent selection of items to be included in the list of recommendations is very important. The exposure of items of little interest may lead consumers to ignore the recommendations. Then, such consumers will possibly not pay attention to other forms of marketing activities. Therefore, the measures should be aligned with the probability of consumer's acceptance of recommendations. For this reason, this study proposes a model-based approach to combine those measures into one unified measure that can consistently determine the ranking of recommended items. A regression model was designed to describe how well the measures (independent variables; i.e., support, confidence, and lift) explain consumer's acceptance of recommendations (dependent variables, hit rate of recommended items). The model is intuitive to understand and easy to use in that the equation consists of the commonly used measures for ARM and can be used in the estimation of hit rates. The experiment using transaction data from one of the Korea's largest online shopping malls was conducted to show that the proposed model can improve the hit rates of recommendations. From the top of the list to 13th place, recommended items in the higher rakings from the proposed model show the higher hit rates than those from the competitive model's. The result shows that the proposed model's performance is superior to the competitive model's in online recommendation environment. In a web page, consumers are provided around ten recommendations with which the proposed model outperforms. Moreover, a mobile device cannot expose many items simultaneously due to its limited screen size. Therefore, the result shows that the newly devised recommendation technique is suitable for the mobile recommender systems. While this study has been conducted to cover the cross-selling in online shopping malls that handle merchandise, the proposed method can be expected to be applied in various situations under which association rules apply. For example, this model can be applied to medical diagnostic systems that predict candidate diseases from a patient's symptoms. To increase the efficiency of the model, additional variables will need to be considered for the elaboration of the model in future studies. For example, price can be a good candidate for an explanatory variable because it has a major impact on consumer purchase decisions. If the prices of recommended items are much higher than the items in which a consumer is interested, the consumer may hesitate to accept the recommendations.

Computerization and Application of Hangeul Standard Pronunciation Rule (음성처리를 위한 표준 발음법의 전산화)

  • 이계영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1363-1366
    • /
    • 2003
  • This paper introduces computerized version of Hangout(Korean Language) Standard Pronunciation Rule that can be used in Korean processing systems such as Korean voice synthesis system and Korean voice recognition system. For this purpose, we build Petri net models for each items of the Standard Pronunciation Rule, and then integrate them into the vocal sound conversion table. The reversion of Hangul Standard Pronunciation Rule regulates the way of matching vocal sounds into grammatically correct written characters. This paper presents not only the vocal sound conversion table but also character conversion table obtained by reversely converting the vocal sound conversion table. Making use of these tables, we have implemented a Hangeul character into a vocal sound system and a Korean vocal sound into character conversion system, and tested them with various data sets reflecting all the items of the Standard Pronunciation Rule to verify the soundness and completeness of our tables. The test results shows that the tables improves the process speed in addition to the soundness and completeness.

  • PDF

Relation for the Measure of Association and the Criteria of Association Rule in Ordinal Database

  • Park, Hee-Chang;Lee, Ho-Soon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.207-216
    • /
    • 2005
  • One of the well-studied problems in data mining is the search for association rules. Association rules are useful for determining correlations between attributes of a relation and have applications in marketing, financial and retail sectors. There are three criteria of association rule; support, confidence, lift. The goal of association rule mining is to find all the rules with support and confidence exceeding some user specified thresholds. We can know there is association between two items by the criteria of association rules. But we can not know the degree of association between two items. In this paper we examine the relation between the measures of association and the criteria of association rule for ordinal data.

  • PDF