• Title/Summary/Keyword: Rudder Angle

Search Result 167, Processing Time 0.056 seconds

A Study on the Ship's Speed Control and Ship Handling at Myeongnayang Waterway (명량수도 해역에서 항해속력 규제와 선박운용에 관한 연구)

  • Kim, Deug-Bong;Jeong, Jae-Yong;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This study provided safe sailing speed and appropriate passing time to areas of known strong current water to prevent marine accident of the ships. To the interpretation of these data which target Myeongnyang waterway, AIS data of the ship was collected from $12^{th}$ July to $15^{th}$ July 2010 and site environment was investigated on $4^{th}$ September 2010. On the basis of the collected data, the 'Minimum Navigation Speed' and 'Optimum Navigation Speed' were calculated. It has also considered the 'Spare control force' or allowance and the 'Respond Rudder Angle' for each tidal current speed. Additionally, it suggested the safe passing time to strong current area by analyzing tidal level and tidal current speed. The conclusion of the research are as follows : (1) If the flow rate is greater than 4.4 kn, it is difficult for the model ship to control herself by her own steering power and to cope with tidal current pressure force and yaw moment caused by the tidal current.. (2) The minimum navigation speed should be over 2.3 times the tidal current and the optimum navigation speed should be over 4.0 times the tidal current. (3) When spring tide, the optimum passing time at Myeongnyang waterway is between 30 minutes to 1 hour before the time of high/low water, and at 5 hours after high/low water, passing of ships should be avoided because it is time when the flow rate is over 4 kn.

A Study on Shifting of Pivoting Point in accordance with Configuration of Ships (선형에 따른 전심의 이동에 관한 연구)

  • 최명식
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF

Usability of Cockpit Design and Musculoskeletal Discomfort in Korean Air Force Fighter Pilots (한국 공군 주력 전투기 조종실의 사용성과 조종사의 근 골격계 불편도에 대한 연구)

  • Byun, Seong-Nam;Lee, Dong-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.100-110
    • /
    • 1999
  • The objectives of this study are twofold: (1) to evaluate the cockpit of three Korean air force fighters such as F-4, F-5, and F-16 in an ergonomic perspective and (2) to measure the musculoskeletal discomfort of the fighter pilots. For the study, 369 air force pilots from 7 squadrons were surveyed. The study shows that the cockpit design of F-16 is superior to the others. However, F-4 is the worst among them. Statistical analyses reveal that the seat in the cockpit raised the most complaints, regardless of types of fighter planes. The main problems with the seat included inappropriate designs of the backrest angle, seat cushioning, and parachute harness. Also frequently cited are various control switches, control stick, rudder pedal, and the throttle. That these items lack human integration is found in remote positions and improper dimensions. The implications of these findings are discussed. The self-reported musculoskeletal complaints show that the main discomfort is on the back and neck. Also, the buttocks, shoulders, and the legs/knees are common sites of discomfort. A stepwise regression analysis shows that the back discomfort, is mainly caused by the use of the seat, rudder pedal, control stick, and switches. A Spearman rank correlation coefficient test also reveals that job dissatisfaction of the pilots is related to the complaints with the cockpit and musculoskeletal discomfort. These findings suggest that more comprehensive studies for cockpit design in the aspects of functional anthropometry of Korean pilots are needed to reduce the musculoskeletal discomfort.

  • PDF

Design of Vessel Autopilot System using Fuzzy Control Algorithm (퍼지제어 알고리지즘을 이용한 선박의 자율운항 시스템 설계)

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.724-727
    • /
    • 2007
  • 선박 운항 자동화 시스템은 선내 노동력 감소, 작업 환경 개선, 운항 안전성 확보 및 운항 능률의 향상을 목표로 하며, 궁극적으로는 운항 경제성확보를 위한 승선 인원의 최소화에 그 목적이 있다. 최근에는 적응 제어방법 등을 응용하여 선박의 비선형성을 보상하여 선박의 회두각 유지제어(Course Keeping Control), 항로 추적제어(Track Keeping Control), 롤-타각제어(Roll-Rudder Stabilization), 선박 위치제어(Dynamic Ship Positioning), 선박자동 접이안(Automatic Mooring Control) 등에 관한 연구를 수행하고 있으며 실제의 선박으로 대상으로 응용연구가 진행 중이다. 선박은 Steering Machine에 의해 조정되는 Rudder angle과 선박의 회두각의 관계는 비선형적이며, 선박의 Load Condition은 선박의 Parameter에 영향을 주는 비선형적인 요소로서 작용한다. 또한 외란요소인 파도의 유속(流速)과 방향, 풍속과 풍량 등이 비선형적인 형태로 작용하므로 선박의 운항을 힘들게 하는 요인이 된다. 따라서 선박의 운항시스템에는 비선형성을 극복할 수 있는 강인한 제어 알고리즘을 요구한다. 본 논문에서는 퍼지 알고리즘을 이용하여 선박의 비선형적인 요인 및 외란을 극복할 수 있는 선박의 자율운항 시스템을 설계하고 시뮬레이션을 통해 그 결과를 살펴보았다.

  • PDF

Prediction of a research vessel manoeuvring using numerical PMM and free running tests

  • Tiwari, Kunal;Hariharan, K.;Rameesha, T.V.;Krishnankutty, P.
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.333-357
    • /
    • 2020
  • International Maritime Organisation (IMO) regulations insist on reduced emission of CO2, noxious and other environmentally dangerous gases from ship, which are usually let out while burning fossil fuel for running its propulsive machinery. Contrallability of ship during sailing has a direct implication on its course keeping and changing ability, and tries to have an optimised routing. Bad coursekeeping ability of a ship may lead to frequent use of rudder and resulting changes in the ship's drift angle. Consequently, it increases vessels resistance and also may lead to longer path for its journey due to zigzag movements. These adverse effects on the ship journey obviously lead to the increase in fuel consumption and higher emission. Hence, IMO has made it mandatory to evaluate the manoeuvring qualities of a ship at the designed stage itself. In this paper a numerical horizontal planar motion mechanism is simulated in CFD environment and from the force history, the hydrodynamic derivatives appearing in the manoeuvring equation of motion of a ship are estimated. These derivatives along with propeller thrust and rudder effects are used to simulate different standard manoeuvres of the vessel and check its parameters against the IMO requirements. The present study also simulates these manoeuvres by using numerical free running model for the same ship. The results obtained from both these studies are presented and discussed here.

Study on the Difference of the Maneuvering Characteristics of a VLCC in Standstill from those of her in Running

  • Lee, Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.623-628
    • /
    • 2009
  • The objective of this paper is to make clear the difference of maneuvering characteristics of a VLCC in standstill from those of her in running. The authors made mathematic models to calculate maneuvering motions of a VLCC in standstill using various ahead engine with full rudder angle and calculated their motions in each case and compared the calculated values with those of the same vessel running in sea trial tests. The difference of motions between them is great. For example, a VLCC in standstill can achieve a great alteration of heading over 90 degrees within the distance of 0.2L advance while she advances 3.0L for 90 degrees turning in full running sea trial turning test. Therefore whenever a VLCC in standstill meets a vessel approaching in collision course situation in near distance, it is better and recommendable that she should use her ahead engine with full rudder to avoid collision. So "maneuvering trial tests in standstill conditions" should be added to the content of sea trial tests when a newly built VLCC commence to take sea trials, that has not been included until now.

A Study on the Development of an Early Detection System for Altering Course of a Target Ship (선회조기감지시스템 개발에 관한 연구)

  • Jung, Chang-Hyun;Park, Young-Soo;Yoon, Dae-Gwun;Choi, Myung-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.625-630
    • /
    • 2016
  • This paper contributes to the development of an early detection system to detect the alteration of a target ship during early stages using the steering wheel signal via AIS communication. The feasibility of this system is also verified with a real ship trial. It was confirmed that the rudder angle on ECDIS was ordinarily marked green or red by the used rudder angle after the steering wheel operation. We were able to detect intentions for a change in course by a target ship quickly and efficiently avoid collisions. This system will contribute to more active VTS services and the analysis of marine accidents using the General Information Center On Maritime Safety & Security (GICOMS).

A Study on the Method to Calculate the New Course Distance of a Ship (선박의 신침로거리의 산정방법에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.10-20
    • /
    • 1992
  • The new course distances of a ship are considered to be the indices to indicate directly her abilities of course altercation. Generally, they have long been calculated by using the maneuvering indices obtained from her Z test. However, at sea actually the maneuvering indices can not sometimes be obtained according to ship's condition or circumstances and the new course distances can not be calculated. To find out other method to calculate the new course distances, in this paper the author analyzed them from a viewpoint of ship motion, and worked out a numerical formula to calculate them easily, using the data of ship's heading test. In order to check whether the presented method is applicable to actual ships or not, the experiment by them were also performed. The results obtained are summarized as follow: 1. The mean difference of the distance between two new course distances by the heading test and the maneuvering indices of the experimental ship was about 0.98% values of the ones by the maneuvering indices, when her heading were 10。, 20。 and 30。, using the rudder angle of 15。. These new course distances were therefore found to be almost same in values of the distance. 2. The mean difference of the distance between two new course distances by the heading test and the observation of experimental ship was about 1.16% values of the ones by the observation, when her headings were 10。, 20。 and 30。, using the rudder angle of 15。. These new course distances were therefore found to be almost same in values of the distance. 3. It is confirmed that the new course distances can be calculated easily by using the method of ship's simple heading test, without the observation or using the maneuvering indices. 4. It is considered to be helpful for the safety of shiphanding to draw curves of new course distances by ship's heading test and utilize them at sea.

  • PDF

A study on the manoeuvrability of T/S SAEBADA by real sea trials (실선시험에 의한 새바다호의 조종 성능에 관한 고찰)

  • An, Young-Su;Kang, Il-Kwon;Kim, Hyung-Seok;Kim, Jung-Chang;Kim, Min-Seok;Jo, Hyo-Jae;Lee, Chun-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.4
    • /
    • pp.289-295
    • /
    • 2005
  • This study is intended to provide navigator with specific information necessary to assist in the avoidance of collision and in operation of ships to evaluate the manoeuvrability of own ship. The actual manoeuvering characteristics of ship can be adequately judged from the results of typical ship trials manoeuvres. Author carried out sea trials based full scale for turning test, zig-zag test, spiral tests and crash-stop test at actual sea going condition. The turning circle manoeuvres were performed on starboard and port sides with $35^{\circ}$ rudder angle at the service speed, and Zig-zag procedures were performed on both sides with $10^{\circ}$ and $20^{\circ}$ rudder angle respectively. Spiral tests were carried out on the both sides and crash stop test was also carried out. The results from tests could be compared directly with the standards of manoeuverability of IMO and consequently the manoeuvring qualities of the ship is fully satisfied with its.

A Novel Collision Avoidance System to Prevent Navigator's Human Error - Development Concepts - (해기사 인적오류 예방이 가능한 새포운 선박충돌회피 시스템 개발 개념)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.264-264
    • /
    • 2019
  • The purpose of this paper is to establish development concepts for a novel collision avoidance system with preventing function of navigator's human error (Hu-CAS) in ship control behaviors. Hu-CAS consists of four modules: 1) collision risk assessment module to estimate collision priority between the ship and objects, 2) decision-making module to decide collision risk levels, 3) parameter estimation module needed in the ship control to avoid collisions and 4) control system to control the rudder angle and speed. Hu-CAS, proposed in this paper, can provide a novel system substitution current Autopilot and/or a CAS be teen manned vessel and Autonomous ship in a future.

  • PDF