• Title/Summary/Keyword: Rubber elasticity

Search Result 72, Processing Time 0.025 seconds

Development of Conical Rubber Mount using Compression and Shear Elasticity (압축 및 전단탄성을 이용한 원형 방진 고무 마운트 개발)

  • 김종연;권오병;김영구;김영중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.393-398
    • /
    • 2002
  • Rubber isolator has properties that can adjust easily stiffness and can be formed various shape. Also, it has high damping and is effective about structure-borne noise at high frequency range, So, rubber mount has widely used to isolate vibration at industrial equipment and construction field. However, rubber material is nonlinear and require enough consideration about shape factor whenever it is designed. The purpose of this paper is to develop conical rubber mount using compression and shear elasticity. The first, the dimension of mount is calculated by theoretical analysis considering design condition and static characteristics have been analyzed by FEM method. In addition, the fatigue test of rubber mount is performed to get reliability for product life and dynamic stiffness test is executed to get dynamic magnification factor. Finally, transmissibility test of vibration isolator has been carried out to suggest normal quantity data about vibration isolation.

  • PDF

A Study on Existing Rubber Elasticity Theories for Stress-Strain Behavior of Rubber-like Networks

  • Meissner, B.
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • The Edwards-Vilgis slip-link theory and the Kaliske-Heinrich extended tube theory were tested experimentally using published experimental data on networks of natural and isoprene rubber and on polysiloxane networks. All parameters were adjusted to achieve an optimum fit. The data description obtained with the EV theory is not satisfactory and the parameter values tend to lie outside their reasonably expected range. But for the region of low strains, the Kaliske-Heinrich theory offers a satisfactorily accurate data description which is able to serve for practical purposes. Its crosslink term, however, is based on approximations which lead to a questionable prediction and values determined for the exponent in the entanglement term lie outside the range expected by the KH model. Thus, the title question cannot be given a positive answer. Conclusions published earlier that the trapped entanglements contribute both to the crosslink and constraint (entanglement) term are supported by the present data analysis. Experimental equibiaxial data on hydrocarbon networks do not show any maximum on their stretch ratio dependence, contrary to the predictions of molecular theories. The stretch ratio dependences of relative reduced stresses do not sensitively reflect differences in the chemical nature of the chain backbone (hydrocarbon vs. siloxane) and in the crosslinking method (end-linking vs. random crosslinking).

Topological Approach to the Rubber Elasticity of Polymer Networks

  • Son Jung Mo;Pak Hyungsuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.84-96
    • /
    • 1989
  • Applying the topological theory of rubber elasticity which was suggested by K. Iwata to the newly devised body-centered cubic lattice model, the authors calculated the values of four terms of the free energy to form polymer networks. Finding the projection matrix of the BCL model, and comparing this with the values of the simple cubic lattice (abbreviated to SCL hereafter) model of K. Iwata, the authors obtained the stress versus strain curves and found that the curves are in good agreement with the experimental results of poly(dimethyl siloxane) networks.

Studies on Wood-based Composite Panel with Waste Tire - Properties of Composite Boards in Relation to Hot Pressing Conditions - (폐타이어를 이용한 목질계 복합판넬의 연구 - 열압조건에 의한 재질특성 -)

  • Lee, Weon-Hee;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • The effect and control of wood property of reconstituted composite panels for improved board properties by wood-waste materials and development of combination method for heterogeneous materials have been of interest to the wood science researchers. The purpose of this study is to consider the properties in relation to hot pressing conditions and to develope the optimum hot pressing condition with waste wood and waste tire for the manufacturing of composite boards. The study of composite boards for recycling of wood and waste tire is nothing up to the present. Physical and mechanical properties such as specific gravity, moisture content, swelling coefficient, modulus of rupture and modulus of elasticity in bending test were studied. The condition of 3-stage press time for the lowest moisture content of composite board was $4{\rightarrow}3{\rightarrow}3$ minutes. Specific gravity of composite panels was affected mainly by the amount of rubber chip. Because of the low rigidity and high elasticity in rubber chip, it is considered the composite panel was adequate material in the place of compression load, but not bending load. Therefore, it was concluded that a use of rubber-based wood composite panel is proper to the interior materials such as floor a room than exterior materials. From the test results, the most optimum hot pressing conditions were $4{\rightarrow}3{\rightarrow}3$ minutes for 3-stage press time and $45{\rightarrow}20{\rightarrow}5kg/cm^2$ for 3-stage press pressure. The rubber-based wood composite panel was very excellent in elasticity by combination of rubber chip in comparison with existing other wood-based materials. Therefore, it was considered that rubber-based wood composites can be applicable to every interior materials such as floor a room and will be expected to effective reuse and recycle of waste tires and wood-waste materials, and will be contribute to protection of environment pollution in earth.

  • PDF

Rubber-liked Biomaterial Experimental Setup based on Nonlinear Elasticity Theory (비선형 탄성이론에 기초한 혈관류 생체재료 실험장치)

  • Kang, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.90-97
    • /
    • 2010
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. Using computer-controlled experimental system, the experiment can acquire data such as inner pressure, axial load, diameter and axial gauge length without contacting the specimen. Rubber-liked material which is similar to passive artery was selected as pseudo-biomaterial. Deformations are measured for pressure-diameter curves. The data were collected and stored online to be used in the feedback control of experimental protocols. Finally, the illustrative data obtained from the experimental system were presented and the system shows that strain invariants are controlled to understand the nonlinear elastic behavior of biomaterial which is involved with strain energy function.

Demand Capacities of Rubber Bear ing for Seismic Isolated Building (고성능 적층고무 면진장치의 요구 성능)

  • Hwang, Kee-Tae;Rim, Jong-Man;Kim, Dong-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.487-494
    • /
    • 2006
  • The ultimate capacities of a rubber bearing are defined by compressive stress, shear strain, and stabilized roster ing force. The experiments were conducted with parameters of shesr elasticity(G) and first shape factor(S1), second shape factor(S2) for rubber bearing. Considering with test results, the ultimate capacities were verified, and furthermore the influence of those parameters were clarified. Using test results stable deformation of rubber bearings for designing was proposed.

  • PDF

The Stiffness Analysis and Optimization of the Rubber Seat Considering Nonlinear Behavior (비선형거동을 고려한 방진고무의 강성해석 및 최적설계)

  • Lee, Dong-Hoon;Seo, Sang-Ho;Yun, Young-Hoon;Park, Jin-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.244-249
    • /
    • 2002
  • Rubber seat is extensively used to reduce the vibration of machine or structure. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties to analyze static characteristics of rubber components with hyper elasticity and nonlinear large deformation. In this paper material property is obtained by strain-stress curve using a tension test. Mooney-Rivlin Coefficients are gotten by fitting strain-stress curve. The visco-elastic characteristics of refrigerator rubber mount is determined by using ANSYS. And to minimize the rubber stiffness, the rubber seat shape optimization is performed.

  • PDF

DEPENDENCE OF RUBBER FRICTION UPON ITS ELASTIC CHARACTERISTICS

  • Nakamura, T.;Hanase, T.;Itoigawa, F.;Matsubara, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.187-188
    • /
    • 2002
  • Rubber has large differences in elastic characteristics from the other solid materials such as metals. Firstly, the rubber exhibits considerably large elastic compliance. Second is highly non-linear elasticity in which the compliance decreases with increase in strain. The main objective in this research is to reveal the dependence of rubber friction upon these elastic characteristics of the rubber in detail. A super elastic FEM analysis is carried out with using an elastic property of practical rubber. From the calculated result, it is cleared that the rubber makes large real contacting area easier than the metals.

  • PDF

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.