• Title/Summary/Keyword: Roughness Block

Search Result 59, Processing Time 0.029 seconds

Experimental Study of Evaporation of Nanofluid Droplet (나노유체 액적의 증발에 관한 실험적 연구)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.647-653
    • /
    • 2013
  • The evaporation characteristics of nanofluid droplets on a heated solid surface were experimentally investigated. The experiments were conducted using pure water and a nanofluid of water mixed with CuO nanoparticles, and the solid surface was made of a copper block heated by a nine cartridge heater. The experimental results showed that the evaporation rate of the nanofluid droplet was higher than that of the pure water droplet on the heated solid surface because nanoparticles increased the thermal conductivity of the nanofluid. Furthermore, it was found that the evaporation rate of the nanofluid droplet increased with the solid surface roughness. This may be because the actual area of the liquid-solid interface increased with the solid surface roughness.

A STUDY ON THE GLOSS AND ROUGHNESS OF THE COMPOSITE RESIN (복합레진의 광택 및 표면조도에 관한 연구)

  • Cho, Seung-Joo;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.67-80
    • /
    • 1990
  • This study was performed for elucidating the effects on surface polishing of composite resins. In this study, Silux(microfilled), Graft(hybrid), Bisfil- I (hybrid posterior) and Hi-pol(conventional) were used. Sixty specimens were made with 4 brands of composite resins and Optilux system in $2.0{\times}1.3{\times}1.0cm$ resin block which has a cavity with 0.5cm diameter and 0.5cm depth. Polishing was done with #600 sand paper and Soflex, Super-snap, Micron finishing system, or Composite polishing kit. Final polished surfaces were measured by roughness tester(Kasaka Lab. Ltd., Japan) and image analyser(Omnimet Image Analyser, Buehler, USA). The results were as follows, 1. The celluloid strip produced the smoothest surfaces. 2. Light curing microfilled composite resin, Silux, had smoother surface than any others. 3. The surfaces polished by Soflex were smoothest. 4. Aluminum oxide disk, Soflex and Super-Snap, made smoother surface than diamond bur, M.F.S., or silicon point, Composite polishing kit. 5. The roughness values of surface polished by M.F.S. composed of diamond burs, were less than those of Composite polishing kit made from silicone points.

  • PDF

Optimum design and performance of marine sea water pump with impeller using CFRP (CFRP 임펠러를 사용한 선박용 해수펌프의 최적설계와 성능특성)

  • Jeong, Seon Yong;Rhi, Seok Ho;Seo, Hyoung Seock;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7878-7884
    • /
    • 2015
  • Marine sea water pump with impeller using carbon fiber block was developed to prevent the impeller corrosion by the salinity. A numerical analysis was carried out in order to optimize the impeller and volute design for marine sea water pump and to investigate the sensitivity of the related parameters(impeller thickness, surface roughness) using CFD commercial code. The impeller thickness is limited because of the weight. Since the impeller using the carbon fiber lights, the thickness which has a maximum efficiency can be used. The results show that the surface roughness leads to an 7% reduction in pump efficiency.

Block Copolymer (PS-b-PMMA) Etching Using Cl2/Ar Gas Mixture in Neutral Beam System (Cl2/Ar gas mixture 중성빔을 이용한 블록공중합체 식각 연구)

  • Yun, Deok-Hyeon;Kim, Gyeong-Nam;Seong, Da-In;Park, Jin-U;Kim, Hwa-Seong;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.332-332
    • /
    • 2015
  • Block Copolymer lithography는 deep nano-scale device 제작을 위한 기존의 top-down방식의 photo-lithography를 대체할만한 기술로 많은 연구가 진행되고 있다. polystyrene(PS)/poly-methyl methacrylate (PMMA)로 구성된 BCP의 nano-scale PS mask는 일반적인 플라즈마 공정에 쉽게 damage를 입는다. 중성빔 식각을 이용하여 식각 공정 중 발생하는 BCP의 degradation을 감소시키고, 비등방성 식각 profile을 얻을 수 있으며 sidewall roughness(SWR)와 sidewall angle(SWA)가 향상되는 것을 알 수 있었다.

  • PDF

Determination of the Proper Block Size for Estimating the Fractal Dimension (프락탈 디멘션을 근사하기 위한 적당한 브록 크기 결정에 관한 연구)

  • Jang, Jong-Hwan
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.67-73
    • /
    • 1995
  • In this paper, a new texture segmentation-based image coding technique which performs segmentation based on properties of the human visual system (HVS) is presented. This method solves the problems of a segmentation-based image coding technique with constant segments by proposing a methodology for segmenting an image into texturally homogeneous regions with respect to the degree of roughness as perceived by the HVS. The segmentation is accomplished by thresholding the fractal dimension so that textural regions are classified into three texture classes; perceived constant intensity, smooth texture, and rough texture. It is very important to determine the proper block size for estimating the fractal dimension. Good quality reconstructed images are obtained with about 0.1 to 0.25 bit per pixel (bpp) for many different types of imagery.

  • PDF

ANALYSIS OF PORCELAIN SURFACE ROUGHNESS POLISHED BY VARIOUS TECHNIQUE (활택방법에 따른 도재표면의 거칠기 비교)

  • Lee, Kyu-Young;Lee, Chung-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.3
    • /
    • pp.506-513
    • /
    • 1998
  • This study was designed to compare the smoothness by glazing method with that by polishing method after 48 specimens of Ceramco II block, one of porcelain materials used for PFM, were baked according to the manufacturer's directions. The specimens were roughened with new green stone at 15,000rpm for 30 seconds and sandblasted with $25{\mu}$aluminum oxide for 15 seconds. They were divided into 4 groups at random, and 4 groups were prepared as follows : Group I : specimens were autoglazed and overpolished with polishing system. Group II : specimens were polished with only polishing system. Group III : specimens were glazed after adding glazing liquid, vitachrom 'L'-fluid (vita zahnfabrik co. Germany) to the rough surface Group V : specimens were just autoglazed Using the surface roughness tester, Ra, Rmax. and Rz were estimated 5 times per specimen, and recording process of mean value was repeated 3 times. The results were as follows : 1. The Ra of group I and group II was lower than group III and group IV (p<001). 2. There was lower value of Rz in group I and group II than group III and group IV (p<001). 3. The Rmax of group I (overpolished with polishing system after autoglazing) and group II (polished with only polishing system) was lower than group III (glazed after adding glazing liquid) and group IV (autoglazed) (p<001). 4. There was not a statistically significant difference between group I and II and between group III and IV (p>001). 5. The roughness was increase in order of group I, II, III, IV in SEM

  • PDF

Effects of Surface Roughness on Contact Angle of Nanofluid Droplet (표면조도가 나노유체 액적의 접촉각에 미치는 영향)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.559-566
    • /
    • 2013
  • The effects of solid surface roughness on the contact angle of a nanofluid droplet were experimentally investigated. The experiments were conducted using the solid surface of a 10 mm cubic copper block and the nanofluid of water mixed with CuO nanoparticles. The experimental results showed that the contact angles of nanofluid droplets were lower than those of water droplets and that the contact angle of the nanofluid droplet increased with the solid surface roughness. Furthermore, it was found that the contact angles of water droplets on the solid surface quenched by both water and the nanofluid were lower than those of water droplets on the pure solid surface. However, significant differences were not observed between the contact angles on the solid surfaces quenched by water and the nanofluid.

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Effects of Electron Beam Irradiation on Tribological and Physico-chemical Properties of Polyoxymethylene (POM-C) copolymer

  • Rahman, Md. Shahinur;Yang, Jong-Keun;Shaislamov, Ulugbek;Lyakhov, Konstantin;Kim, Min-Seok;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.153-153
    • /
    • 2016
  • Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 KGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using Pin on disk tribometer, Raman spectroscopy, SEM-EDS, Optical microscopy, 3D Nano surface profiler system and Contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in a decrease of the friction coefficient and wear loss of POM-C block due to well suited cross-linking, carbonization, free radicals formation and energetic electrons-atoms collisions (physical interaction). It also shows lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation doses at 200, 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The electron beam irradiation transferred the wear of unirradiated POM-C block from the abrasive wear, adhesive wear and scraping to mild scraping for the 1 MeV, 100 kGy irradiated POM-C block which is concluded from SEM-EDS and Optical microscopic observations. The degree of improvement for tribological attribute relies on the electron beam irradiation condition (energy and dose rate).

  • PDF

Development and Hydraulic Characteristics of Continuous Block System in River Bank Protection (II) - Comparison of Numerical Analysis with Physical Modeling - (일체형 식생호안블록 시스템 개발 및 수리특성 연구(II) -일체형 호안블록시스템 수치모의를 통한 효과 분석-)

  • Jang, SukHwan
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.99-109
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of continuous block system in river bank protection which is newly developed in-situ block system. To verify the hydraulic physical modeling and review the effectiveness, the numerical modeling was needed against the model test results for vegetation application or not. HEC-RAS model was for 1 dimensional numerical analysis and SMS was for 2 dimensional numerical analysis. The results of the two dimensional numerical simulation, under the condition of roughness coefficient calibration, show similar and rational consequence against the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF