• Title/Summary/Keyword: Rotor Vibration Analysis

Search Result 494, Processing Time 0.032 seconds

Development of Rotordynamic Analytical Model and Analysis of Vibration Response of a Turbocharger (터보차져의 로터다이나믹 해석모델 개발 및 진동응답 해석)

  • Kim, Byung-Ok;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.35-42
    • /
    • 2010
  • This paper deals with the development of analytical model of a turbocharger and its detail rotordynamic analysis. Two analytical models, which are verified by experimental modal testing, are proposed and the analytical model including rotor shaft extended to compressor and turbine wheel end side is chosen. A rotordynamic analysis includes the critical map, Campbell diagram, stability, and unbalance response, especially nonlinear transient response considering nonlinear fluid film force at bearings. Although the linearized analysis accurately predicts the critical speeds, stability limit, and stability threshold speed, the predicted vibration results are not valid for speeds above the stability threshold speed since the rotor vibrates with a subsynchronous component much larger than the one synchronous with rotor speed. Hence, for operating speed above the stability threshold, a nonlinear transient analysis considering nonlinear fluid film force must be performed in order to accurately predict vibration responses of rotor and guarantee results of analysis.

Modal Model Reduction for Vibration Control of Flexible Rotor Supported by Active Magnetic Bearing

  • Jeon, Han-Wook;Lee, Chong-Won;Seto, Kazuto
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.290-293
    • /
    • 2008
  • This paper proposes a criterion to select the modes for modal truncated model of flexible rotor only supported by active magnetic bearings. The proposed approach relies on the concepts of minimum control input and output energy assuming that the system is subjected to transient disturbances. Accurate large order model for the levitated rotor is taken by finite element analysis and transformed to the modal equation. By proposed methodology, which modal states should be retained in the truncated model are investigated over the whole operational speed range by the calculation. Finally, the effectiveness is verified by checking the model error between original model and reduced model.

  • PDF

A Method for Rotor Vibration Monitoring of Induction Motor by Flux Measurement (자속측정에 의한 유도전동기의 회전자 진동감시 기법)

  • Hwang, Don-Ha;Lee, Ki-Chang;Kang, Dong-Sik;Kim, Yong-Joo;Choi, Kyeong-Ho;Lee, Jin-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.52-54
    • /
    • 2005
  • In this paper, a new approach monitoring rotor vibrations in a squirrel-cage induction motor is proposed. The air-gap flux variation analysis was done using search coils inserted in stator slots when rotor vibration conditions occur. An accurate modelling and analysis of air-gap flux variation in the induction motor are developed using finite-element(FE) software packages, and measuring the flux are made using search coils. In the FE analysis, the three-phase squirrel-gage induction motor with 380 (V), 5 (HP), 4 Poles, 1,742 [rpm] ratings is used. The results of FE analysis can be useful for on-line vibration monitoring of the induction motors.

  • PDF

Modal analysis of asymmetric/anisotropic rotor system using modulated coordinates (변조좌표계를 이용한 비대칭/비등방 회전체의 모드 해석)

  • 서정환;홍성욱;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.304-309
    • /
    • 2003
  • A new modal analysis method for rotor systems with periodically time-varying parameters is proposed. The essence of method is to introduce modulated coordinates to derive the equivalent time-invariant equation. This paper presents a modal analysis method using modulated coordinates fur general rotors, of which rotating and stationary parts both possess asymmetric properties. The equation of motion with time-varying parameters is transformed to an infinite order matrix equation with the time-invariant parameters. A theory of modal analysis for the system is presented with the infinite order equation and a couple of reduced order equations. A numerical example with simple asymmetric rotor is provided to demonstrate the effectiveness of the proposed method

  • PDF

Rotor Dynamic Design of the Centrifugal Chiller Using Offset Bearing (Offset 베어링을 활용한 터보냉동기의 회전체동역학 설계)

  • Lee Chang-Joong;Park Yong Suk;Lee Joonkeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.239-246
    • /
    • 2005
  • A rotor dynamic analysis is implemented to confirm the vibration stability of the high speed centrifugal chiller coupled with gear system. As the rotating speed of the centrifugal chiller under investigation is increased up to 17605rpm at the pinion rotating part, the bearing instability is getting higher and, furthermore, the rotor-bearing system might experience a few critical speed which lead to system failure due to the excessive vibration. In this study, considering the loading capacity and stability conditions, offset journal bearings are adopted for the pinion rotating system and general cylindrical bearings are used for motor part. From the modal analysis, the system is found to be stable as the critical damping ratio which shows the damping characteristics of the system are positive over all operating ranges, and in addition, the synchronous rotating frequency does not come across with any whirl natural frequency. From these results the authors confirm the vibration stability of the rotor-bearing system suggested in this study.

Analysis of Current/Vibration Characteristics for Vertical Pump Induction Motors in Power Plant (발전소 입형펌프 전동기의 전류/진동신호 특성 분석)

  • Kim, Yeon-Whan;Lee, Doo-Young;Gu, Jea-Rayng;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.400-405
    • /
    • 2005
  • The diagnosis of mechanical load and of power transmission system failures is usually carried out through mechanical signals such as vibration signals, acoustic emissions, motor speed envelope. If the mechanical load comes from an electrical machine the mechanical failures could be detected previously. Mechanical rotor imbalances and rotor eccentricities are reflected in electric, electromagnetic and mechanical quantities. Therefore, many surveillance schemes apply to the Fourier spectrum of a line current in order to monitor the motor condition. Due to the interaction of the currents and voltages, both these current harmonics are also reflected by a single harmonic component in the frequency spectrum of the electric power. Motor Current Signature Analysis is the usuful technique to assess machine electrical condition.

  • PDF

Structural Vibration Analysis for a Composite Smart UAV Considering Dynamic Hub-loads of the Tilt-rotor (틸트로터 허브 동하중을 고려한 복합재 스마트 무인기 진동해석)

  • Kim, Dong-Hyun;Jung, Se-Un;Koo, Kyo-Nam;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Ju-Young;Choi, Ik-Hyeon;Lee, Jung-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.63-71
    • /
    • 2005
  • In this study, structural vibration analyses of a composite smart unmanned aerial vehicle (UAV) have been conducted considering dynamic hub-loads of tilt-rotor. Practical computational structural dynamics technique based on the finite element method is applied using MSC/NASTRAN. The present smart UAV(TR-S2) structural model is constructed as full 3D configurations with both the helicopter flight mode and the airplane flight mode. Modal based transient response and frequency response analyses are used to efficiently investigate vibration characteristics of structure and installed electronic equipments. It is typically shown that the helicopter flight mode with the 90-deg tilting angle is the most critical case for the induced vibration of installed electronic equipments in the front.

Analysis of the Eccentric Characteristics of the Brushless Motor by the Rotor Structure (회전자 구조에 따른 브러시리스 모터 편심 특성 분석)

  • Son, Byoung-Ook;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.156-163
    • /
    • 2010
  • The brushless motor is getting widely applied to the automotive component with the advantage of the high efficiency, high reliability and etc.. Most of the motor applications require the low vibration and acoustic noise. The cogging torque is the one of the main cause of the noise and vibration. The step-skewed rotor is used to reduce the cogging torque. We analyze the characteristics of the step-skewed rotor and non skewed rotor with the same stator by using 2-dimensional FEM. And then we analyze the characteristics variation according to the rotor eccentricity. The prototype is made and tested. As the results, the step-skewed rotor structure reduce the cogging torque and local radial force but it is more sensitive to rotor eccentricity.

The Vibration Characteristic and Fatigue Life Estimation of a Small-scaled Hingeless Hub System with Composite Rectangular Blades (복합재료 기준형 블레이드를 장착한 축소 힌지없는 허브시스템의 진동특성과 피로수명 예측)

  • Song, Keun-Woong;Kim, Jun-Ho;Kim, Duck-Kwan;Joo, Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper described that rotating test and fatigue test of a small-scale hingeless hub system with composite rectangular blades. Generally Rotating stability and fatigue test technique is one of Key-technology on test and evaluation for helicopter rotor system Rotating test of hingeless rotor system was achieved by means of rotor vibration characteristic and aeroelastic stability test GSRTS, equipped with hydraulic actuator and 6-component rotating balance was used to test hingeless rotor system especially for an observation of blade motion including flawing, lagging and feathering. Rotating test was done in hover and forward flight condition. Small-scaled blade fatigue test condition was determined by blade load analysis with the reference table of composite materials(S-N curve). Fatigue test bench was developed for the estimation of blade fatigue life, and tested its characteristic.

  • PDF

Vibration Analysis of a Rotor considering Nonlinear Reaction of Hydrodynamic Bearing

  • Lee, Soo-Mok;Lim, Do-Hyeong;Bae, Jong-Gug;Yang, Bo-Suk
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.254-259
    • /
    • 2009
  • In this paper it was attempted to treat the hydrodynamic journal bearing as a time-based nonlinear reaction source in each step of rotor rotation in order to observe the bearing effect more realistically and accurately in stead of the conventional method of simple linearized stiffness and damping. Lubrication analysis based on finite element method is employed to calculate the hydrodynamic reaction of bearing and Newmark's method was used to calculate the rotor dynamics in the time domain. Simulation for an industrial electrical motor showed remarkable results with differences compared to those by the conventional method in the dynamic behavior of the rotor.