• Title/Summary/Keyword: Rotor Speed

Search Result 1,976, Processing Time 0.024 seconds

Design of Mach-Scale Blade for LCH Main Rotor Wind Tunnel Test (소형민수헬기 주로터 풍동시험을 위한 마하 스케일 블레이드 설계)

  • Kee, YoungJung;Park, JoongYong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.159-166
    • /
    • 2018
  • In this study, the internal structural design, dynamic characteristics and load analyses of the small scaled rotor blade required for LCH(Light Civil Helicopter) main rotor wind tunnel test were carried out. The test is performed to evaluate the aerodynamic performance and noise characteristics of the LCH main rotor system. Therefore, the Mach-scale technique was appled to design the small scaled blade to simulate the equivalent aerodynamic characteristics as the full scale rotor system. It is necessary to increase the rotor speed to maintain the same blade tip speed as the full scale blade. In addition, the blade weight, section stiffness, and natural frequency were scaled according to the Mach-type scaling factor(${\lambda}$). For the design of skin, spar, torsion box, which are the main components of the blade, carbon and glass fiber composite materials were adopted, and composite materials are prepreg types that can be supplied domestically. The KSec2D program was used to evaluate the section stiffness of the blade. Also, structural loads and dynamic characteristics of the Mach scale blade were investigated through the comprehensive rotorcraft analysis program CAMRADII.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS (RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석)

  • Kim, T.S.;Lee, C.;Son, C.H.;Joh, C.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

Performance Improvement of a PMSM Sensorless Control Algorithm Using a Stator Resistance Error Compensator in the Low Speed Region

  • Park, Nung-Seo;Jang, Min-Ho;Lee, Jee-Sang;Hong, Keum-Shik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.485-490
    • /
    • 2010
  • Sensorless control methods are generally used in motor control for home-appliances because of the material cost and manufactureing standard restrictions. The current model-based control algorithm is mainly used for PMSM sensorless control in the home-appliance industry. In this control method, the rotor position is estimated by using the d-axis and q-axis current errors between the real system and a motor model of the position estimator. As a result, the accuracy of the motor model parameters are critical in this control method. A mismatch of the PMSM parameters affects the speed and torque in low speed, steadystate responses. Rotor position errors are mainly caused by a mismatch of the stator resistance. In this paper, a stator resistance compensation algorithm is proposed to improve sensorless control performance. This algorithm is easy to implement and does not require a modification of the motor model or any special interruptions of the controller. The effectiveness of the proposed algorithm is verified through experimental results.

Vector Control of sensorless induction motor using Extended Kalman Filter theory (확장칼만필터 이론을 응용한 속도센서없는 유도전동기의 벡터제어)

  • 오원석;임남혁;홍찬희
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.41-48
    • /
    • 1995
  • In field oriented control of Induction motors, speed sensor is required, which reduces the sturdiness of drive system and together with the expenditure of hardware for faultless transmission and processing of sensor signals it causes considerable expenses. These expensive sensors can be replaced by speed sensorless concept. And for good control, the knowledge of the rotor flux component or the rotor resistance are needs. Thus, this paper is based on a Extended Kalman Filter (EKF) that estimates the state variables that are required for the control by only measuring the line voltages and currents of the machine. the rotor time constant and speed estimated by the EKF show satisfactory agreement with the real values, with the simulation approaches.

  • PDF

Position Correction Method for Misaligned Hall-Effect Sensor of BLDC Motor using BACK-EMF Estimation (역기전력 추정법을 이용한 브러시리스 직류 전동기의 홀센서 상전류 전환시점 보상 방법)

  • Park, Je-Wook;Kim, Jong-Hoon;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.246-251
    • /
    • 2012
  • This paper proposes a new position compensation method for misaligned Hall-effect sensors of BLDCM(Brushless DC Motor). If the Hall-effect sensors are installed at wrong position, the exact rotor position cannot be obtained. Therefore, when the BLDCM is controlled with this wrong position, the torque ripple can be increased and the average torque also decreases. The back-EMF of BLDCM can be obtained by using the voltage equation and by multiplying the back-EMF constant and rotor speed. At a constant speed, the estimated back-EMF by using the multiplication of the back-EMF constant and rotor speed is constant, but the estimated back-EMF from the voltage equation decreases at the commutation point because the line-to-line back-EMF of two conducting phases is start to decrease at this point. Therefore, by using the difference between these two estimated back-EMFs, the commutation point of the phase current can be determined and position compensation can be carried out. The proposed position correction method doesn't require additional hardware circuit and can be easily implemented. The validity of the proposed position compensation method is verified through several experiments.

A Three-Dimensional Numerical Simulation of Rotating Stall in an Axial Compressor (축류 압축기에서의 선회실속에 관한 3차원 수치해석)

  • Choi, Min-Suk;Oh, Seong-Hwan;Ki, Dock-Jong;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.68-75
    • /
    • 2007
  • A three-dimensional computation is conducted to simulate a three-dimensional rotating stall in a low speed axial compressor. It is generally known that a tip leakage flow has an important role on a stall inception. However, almost of researchers have taken no interest in a role of the hub-comer-stall on the rotating stall even though it is a common feature of the flow in an axial compressor operating near stall and it has a large effect on the flows and loss characteristics. Using a time-accurate unsteady simulation, it is found that the hub-comer-stall may be a trigger to collapse the axisymmetric flows under high loads. An asymmetric disturbance is initially originated in the hub-comer-stall because separations are naturally unstable flow phenomena. Then this disturbance is transferred to the tip leakage flows from the hub-comer-stall and grows to be stationary stall cells, which adheres to blade passage and rotate at the same speed as the rotor. When stationary stall cells reach a critical size, these cells then move along the blade row and become a short-length-scale rotating stall. The rotational speed of stall cells quickly comes down to 79 percent of rotor so they rotate in the opposite direction to the rotor blades in the rotating frame.

Speed and Flux Estimation for an Induction Motor Using a Parameter Estimation Technique

  • Lee Gil-Su;Lee Dong-Hyun;Yoon Tae-Woong;Lee Kyo-Beum;Song Joong-Ho;Choy Ick
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, an estimator scheme for the rotor speed and flux of an induction motor is proposed on the basis of a fourth-order electrical model. It is assumed that only the stator currents and voltages are measurable, and that the stator currents are bounded. There are a number of common terms in the motor dynamics, and this is utilized to find a simple error model involving some auxiliary variables. Using this error model, the state estimation problem is converted into a parameter estimation problem assuming that the rotor speed is constant. Some stability properties are given on the basis of Lyapunov analysis. In addition, the rotor resistance, which varies with the motor temperature, can also be estimated within the same framework. The effectiveness of the proposed scheme is demonstrated through computer simulations and experiments.

Improved Frequency Mitigation of a Variable-Speed Wind Turbine (개선된 가변속 풍력발전기의 주파수 평활화)

  • Li, Mingguang;Yang, Dejian;Kang, Yong Cheol;Hong, Junhee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.695-701
    • /
    • 2018
  • For a power grid that has a high wind penetration level, when wind speeds are continuously fluctuating, the maximum power point tracking (MPPT) operation of a variable-speed wind turbine (VSWT) causes the significant output power fluctuation of a VSWT, thereby significantly fluctuating the system frequency. In this paper, an improved power-smoothing scheme of a VSWT is presented that significantly mitigates the frequency fluctuation caused by varying wind speeds. The proposed scheme employs an additional control loop based on the frequency deviation that operates in combination with the MPPT control loop. To improve the power-smoothing capability of a VSWT in the over-frequency section (OFS), the control gain of the additional loop, which is set to be inversely proportional to the rotor speed, is proposed. In contrast, the control gain in the under-frequency section is set to be proportional to the rotor speed to improve the power-smoothing capability while avoiding over-deceleration of the rotor speed of a VSWT. The proposed scheme significantly improves the performance of the power-smoothing capability in the OFS, thereby smoothing the frequency fluctuation. The results clearly demonstrate that the proposed scheme significantly mitigates the frequency fluctuation by employing the different control gain for the OFS under various wind penetration scenarios.