• 제목/요약/키워드: Rotor Active Control

검색결과 154건 처리시간 0.026초

축-베어링 계의 불균형 응답에 대한 능동 제어 베어링의 효과 (Effect of Active Control Bearing on Unbalance Response of a Rotor-Bearing System)

  • 노병후;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.316-321
    • /
    • 2001
  • The paper presents the unbalance response of a rotor-bearing system supported by an active control bearing. The proportional, derivative and integral controls are employed for the control algorithm of an active control bearing to suppress the unbalance response of a rotor-bearing system. Results of analytical investigations on the unbalance responses of a rotor supported by an active control bearing are presented for various control gains. It is found that the unbalance response of a rotor can be greatly suppressed by the proportional, derivative or integral control of the bearing. The proportional control is more effective than the derivative control at low rotational speed, and the derivative control is more effective than the proportional control at high rotational speed. In the case of the integral control of the bearing , the unbalance response of a rotor is increased as a general rule. However, the integral control of the bearing is extremely superior to proportional or derivative control at very low rotational speed.

  • PDF

축-베어링 계의 불균형 응답에 대한 능동 제어 베어링의 효과 (Effect of Active Control Bearing on Unbalance Response of a Rotor-Bearing System)

  • 노병후;김경웅
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.99-104
    • /
    • 2002
  • The paper presents the unbalance response of a rotor-bearing system supported by an active control bearing. The proportional, derivative and integral controls are investigated fur the control algorithm of an active control bearing to suppress the unbalance response of a rotor-bearing system. Results of analytical investigations on the unbalance responses of a rotor supported by an active control bearing are presented for various control gains. It is found that the unbalance response of a rotor can be greatly suppressed by the proportional, derivative or integral control of the bearing. The proportional control is more effective than the derivative control at low rotational speed, and the derivative control is more effective than the proportional control at high rotational speed. In the case of the integral control of the bearing, the unbalance response ova rotor is increased as a general rule. However, the integral control of the bearing is extremely superior to proportional or derivative control at very low rotational speed.

Detailed Design of an Active Rotor Blade for Reducing Helicopter Vibratory Loads

  • Natarajan, Balakumaran;Eun, Won-Jong;Shin, Sang-Joon
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.236-241
    • /
    • 2011
  • An active trailing-edge flap blade named as Seoul National University Flap (SNUF) blade is designed for reducing helicopter vibratory loads and the relevant aeroacoustic noise. Unlike the conventional rotor control, which is restricted to 1/rev frequency, an active control device like the present trailing-edge flap is capable of actuating each individual blade at higher harmonic frequencies i.e., higher harmonic control (HHC) of rotor. The proposed blade is a small scale blade and rotates at higher RPM. The flap actuation components are located inside the blade and additional structures are included for reinforcement. Initially, the blade cross-section design is determined. The aerodynamic loads are predicted using a comprehensive rotorcraft analysis code. The structural integrity of the active blade is verified using a stress-strain recovery analysis.

  • PDF

Review of Active Rotor Control Research in Canada

  • Feszty, Daniel;Nitzsche, Fred
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.93-114
    • /
    • 2011
  • The current status of Canadian research on rotor-based actively controlled technologies for helicopters is reviewed in this paper. First, worldwide research in this field is overviewed to put Canadian research into context. Then, the unique hybrid control concept of Carleton University is described, along with its key element, the "stiffness control" concept. Next, the smart hybrid active rotor control system (SHARCS) projected's history and organization is presented, which aims to demonstrate the hybrid control concept in a wind tunnel test campaign. To support the activities of SHARCS, unique computational tools, novel experimental facilities and new know-how had to be developed in Canada, among them the state-of-the-art Carleton Whirl Tower facility or the ability to design and manufacture aeroelastically scaled helicopter rotors for wind tunnel testing. In the second half of the paper, details are provided on the current status of development on the three subsystems of SHARCS, i.e. that of the actively controlled tip, the actively controlled flap and the unique stiffness-control device, the active pitch link.

헬리콥터 소음 예측 코드 개발 및 적용사례 (Development of the Helicopter Noise Prediction Code and its Applications)

  • 위성용;김도형;강희정;정기훈;황창전
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.904-910
    • /
    • 2014
  • The Helicopter noise analysis code was developed using Farassat's Formular 1A based on Ffowcs-Williams and Hawkings equation and Lowson's Formula which contains single loading noise source concept. HART-II(Higher harmonic control Aeroacoustic Rotor Test), STAR(Smart-Twisting Active Rotor) and Active-tab Rotor were computed and analyzed by using developed noise code. The results of these rotor noise prediction are explained and its applicability would be mentioned in this paper.

  • PDF

Vibration control of active magnetic bearing systems using digital signal processor

  • Shimomachi, T.;Fukata, S.;Kouta, Y.;Ishimatsu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1178-1183
    • /
    • 1990
  • A digital signal processor(DSP) is applied to realizing a compensator of control system of active magnetic bearings, to restrict a resonance caused by the first-order bending vibration of a flexible rotor, and to run the rotor beyond the critical speed. A full-order observer is applied to the translatory rotor-motion with the first-order vibration mode. A PID control is used for the conical motion. The rotor used in the experiments is symmetric, and an electromagnet and a displacement sensor are set in collocation.

  • PDF

회전체 진동 감소를 위한 마그네틱 댐퍼의 설계 및 응용 (Design and Application of Magnetic Damper for Reducing Rotor Vibration)

  • 김영배;이형복;이봉기
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.355-361
    • /
    • 2000
  • In this study, active control magnetic actuator for reducing vibration of rotor system is performed. Identification, modeling, simulation, control system design, and evaluation of active magnetic damper system have been researched. Power amplifier modeling, connected magnetic actuator and augmented by system identification, is included to establish a magnetic damper simulation which provides close performance correspondence to the physical plant. A magnetic actuator, digital controller using DSP(Digital Signal Processor), and bipolar operational power supply/amplifiers are developed to show the effectiveness of reducing rotor vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent components is developed. Two kinds of test are executed as sliding and oil bearing. Results presented in this paper will provide a well-defined technical parameters in designing magnetic damper system for the proposed rotor.

PMSG 풍력발전 시스템의 출력 제어 및 주파수 제어 연구 (A Study on Frequency Control and Active Power Control of Wind Turbine Generation System for PMSG)

  • 이광수;김문겸
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.597-607
    • /
    • 2014
  • This paper proposes active power control and frequency support control schemes of wind turbine generation system by using modified Maximum Power Point Tracking(MPPT) of Permanent Magnet Synchronous Generator(PMSG). Most wind turbine generation system is completely decoupled from the power system and power output control with pitch control. According to the frequency deviation, however, MPPT control can not contribute to the frequency change of the power system due to its active power output control. For solving this, the de-loaded(DL) control scheme is constructed for the frequency support control, which is based on applying the active power output control in the rotor speed control of PMSG. The rotor speed by used in the proposed DL control scheme is increased more than the optimal rotor speed of MPPT, and then this speed improvement increases the saved kinetic energy(KE). In order to show the effectiveness of the proposed control scheme, the case studies have been performed using the PSCAD/EMTDC. The results show that the proposed active power output control scheme(DL control and KE discharge control) works properly and the frequency response ability of the power system can be also improved with the frequency support of wind farm.

유연 회전축의 다물체 동역학 모델링 및 위상 조절법을 이용한 진동 제어 (Multi-Body Dynamic Modeling for a Flexible Rotor and Vibration Control using a Novel Phase Adjusting Technique)

  • 정훈형;조현민;김재실;조수용
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.87-92
    • /
    • 2011
  • This article proposes a new technique of the dynamic model using multi-body dynamic analysis tool for a flexible main spindle rotor system with a novel phase adjusting control technique for the purpose of an active control of rotor vibration. The dynamic model is used as a plant model. Also in order to make control system, a component parameters and phase controller is composed and simulated by SIMULINK. The vibration is reduced to 50%. Therefore the ADAMS dynamic model for the flexible main spindle rotor and the phase adjusting control techniques may be effective for the suppressing the vibration and helpful for the future active control for rotor vibration.

초고속 유연회전체의 위상조절법을 이용한 능동진동제어 시뮬레이션 (Simulation of active vibration control using phase adjusting method with high speed flexible rotor system)

  • 나재봉;김성원;이원창;김재실
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.425-426
    • /
    • 2006
  • This study proposes a new simulation method of high speed rotor system with the dynamic model using multi body dynamic analysis tool and with a new phase modulating technique as a system control algorithm. A dynamic model of high speed rotor system was built by, ADAMS, commercial multi body dynamic program. The phase modulating technique is a new control algorithm for a rotor system. This algorithm can control system using an adaptive proportional gain and an adaptive phase which are obtained from periodical input signal. To make control system, a ADAMS model and component parameters and phase controller was composed by Matlab Simulink And simulate it.

  • PDF