• 제목/요약/키워드: Rotational radius

검색결과 68건 처리시간 0.028초

전동/발전기 코어에 의한 초전도 플라이휠 에너지 저장장치의 회전손실 특성 평가 (Rotational loss assessment of flywheel energy storage system by Motor/Generator core)

  • 이정필;한영희;정세용;한상철;정년호;성태현
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1775-1781
    • /
    • 2007
  • In this paper, the rotational loss of the superconductor flywheel energy storage system (SFES) by motor/generator stator core was assessed. To do this, the vertical axial type SFES with journal type superconductor bearing was manufactured. To quantitatively assess the rotational loss by the stator core, the rotational losses by superconductor bearing and the degree of a vacuum were measured. In case of variation of the inner radius and outer radius of the stator core, the rotational losses were measured. From the experimental results, It is confirmed that the rotational loss can be reduced by means of the optimal stator core design.

비원형기어를 이용한 부등속 회전기구의 설계 변수에 관한 연구 (Determination of Designing Condition for a Velocity of Inequality Rotatonal Equipment with Non-Circular Gears.)

  • 차철웅;최상훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.861-866
    • /
    • 1996
  • The Non-Circular Gears is more advantage than other machinery using link and cam in the automation equipment. We designed Non-Circular Gears for a velocity of inequalty rotational equipment according to the variation of pressure angle, radius of curvature etc., and studied about pitch curve.

  • PDF

가변 레이저 빔 패턴에 따른 열영향 해석 (Analysis of Heat Transfer by Various Laser Beam Patterns in Laser Material Process)

  • 최해운
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.37-44
    • /
    • 2018
  • In laser material processing for high thermal conductivity, the thermal effect of laser beam shape was examined through computer simulations. In this paper, a circular beam with a focal radius of $500{\mu}m$, an elliptical beam with a major axis of 4 mm and a minor axis of 1 mm, and a rotating beam with a focal radius of $500{\mu}m$ and an angular velocity of 5 rad/sec were compared. Simulation results showed that there was no clear difference in the maximum temperature between the circular focus and the elliptical shape, but the heating and cooling rates were different. The simulation result for a laser beam rotating in a circular pattern with a radius of 5 mm showed an asymmetric temperature rise due to the combination of linear and rotational motion. At points where the rotational and linear speeds combined, the temperature gradually rose and reached the maximum temperature; whereas at points where the rotational and linear speeds were attenuated, the temperature tended to gradually decrease after reaching the maximum temperature. Based on the results of this study, the authors expect to be able to optimize laser material processing by designing patterns of laser beams.

자벌레형 정밀 회전 모터의 개발 (Development of a Inchworm-Type Precise Rotational Motor)

  • 김상채;김수현;곽윤근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.458-461
    • /
    • 1995
  • A new type of rotational motor which is developed has a resolution smaller than 10 $^{-4}$ radian and can be accessed for full rotational angles. The operation principle of the motor is based on inchworm motion of two belt driving mechanism. Flexure hinge mechanism, which is pertinent to symmetry construction of the motor, is designed to minimze the effort to frame and is analyzed by using finite element method. Depending on input signal amplitude, rotational angle by one cycle is varied form 0.2*10 $^{-4}$ rad to 9.76* $^{-4}$ rad. This shows that it has the capability of getting very small rotational angle by considering radius of rotor and amplitude of input signal.

  • PDF

환원판이 결합된 원통셸의 진동해석 (Vibration Analysis of Combined Cylindrical Shells with an Annular Plate)

  • 김영완;정강
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.767-776
    • /
    • 2003
  • The theoretical method is developed to Investigate the nitration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural coupling between shell and plate is simulated using two types of artificial springs a translational spring is introduced for translational coupling and a rotational spring is used for rotational coupling. The springs are continuously distributed along circumferential direction. Using the Rayleigh-Ritz method the natural frequencies and mode shapes of the combined shell with an annular plate examine. The effect of Inner-to-outer radius ratio, axial position of annular plate and length-to-radius ratio of shell on vibration characteristics of combined cylindrical shells is studied. The theoretical results are verified by comparison with FEM results.

추가변형을 고려한 환원판 결합 원통셸의 진동해석 (Vibration Analysis of Annular Plate Combined Cylindrical Shells Considering Additional Deformations)

  • 김영완;정강
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.551-556
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

  • PDF

상대적으로 작은 기초를 갖는 급수탑의 안정성 (Stability of Water Tower with a Relatively Small Footing)

  • 오상진;진태기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.963-968
    • /
    • 2006
  • The main purpose of this paper is to investigate the stability of water tower with a relatively small footing. The water tower is modeled that the column carrying a container is supported by a rotational spring at the base and is of constant cross-section, with a weight per unit length of column axis. The column model is based on the Bernoulli-Euler beam theory. The Runge-Kutta method and Determinant Search method are used to perform the integration of the governing differential equation and to determine the critical values(critical own weight. and critical buckling load), respectively. The critical buckling loads are calculated over a range of system parameters: the rotational stiffness parameter, the dimensionless radius of container and the own weight parameter of the column. The relation between the rotational stiffness parameter and the critical own weight parameter of the column is analyzed.

  • PDF

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

단축적방법을 이용한 다단 축류압축기의 설계 (A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method)

  • 강동진
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.