• 제목/요약/키워드: Rotational error of spindle

검색결과 31건 처리시간 0.02초

회전 유니트의 회전정밀도 예측 기술 (Estimation of Rotational Motion Accuracy for Rotary Units)

  • 황주호;심종엽;박천홍
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.127-133
    • /
    • 2015
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Those are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, external force or unbalance of rotors. The error motions of the spindle have been needed to be decreased to desired goal of spindle's performance. The level of error motion is needed to be estimated during the design and assembly process of the spindle. In this paper, the estimation method for the five degree of freedom (5 D.O.F) error motions for rotary units such as a spindle and rotary table are suggested. To estimate the error motions of the rotary unit, waviness of bearings and external force model were used as input data. The estimation model considers geometric relationship and force equilibrium of the five degree of the freedom motions.

볼-유정압 복합베어링을 갖는 고정밀 주축의 회전특성에 관한 연구 (Rotational Characteristics of High Precision Spindle Unit with Ball-Hydrostatic Bearing)

  • 이찬홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.663-667
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static and dynamic charateristics of spindle unit are needed for special purpose of machine tools. Specially, high damping ability may be very useful to high precision and high speed spindle unit. But commercial bearing system has very low damping value and high stiffness. In this paper, the combined bearing system with ball-hydrostatic bearing is suggested for high damping spindle unit. The suggested bearing system has 30% damping ability more than general ball bearing's. The average rotational accuracy of spindle with combined bearing in working speed is 24% better than with ball bearing. The unbalance rotating experiment in spindle show that rotating error with combined bearing is only half value of with ball bearing.

  • PDF

나사연삭기 회전전달 및 테이블 이송오차 평가에 관한 연구 (A Study on the Evalution of Rotational and Linear Movement Error in Thread Grinder)

  • 박철우;윤영식;이상조
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.45-52
    • /
    • 1996
  • It is one of the important causes that the precision of the thread grinder decide the machining errors of the ball screw. The approach described in this study demonstrates how the dominant causes of the inaccuracies in thread grinding system can be determined. To evaluate the machining error of thread grinder, rotary encoder is allocated to spindle shaft and master screw for measuring the rotational transfer error between spindle shaft and master screw and the laser measuring system is used for checking the movement error.

  • PDF

고정밀 회전체의 불평형 변동에 따른 회전정밀도 영향에 관한 연구 (A Study on the Rotation Accuracy According to Unbalance Variation of High Precision Spindle Unit for Machine Tool)

  • 김상화;김병하;진용규
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.174-181
    • /
    • 2012
  • The spindle unit is a core part in high precision machine tool. Rotation accuracy of spindle unit is needed for high dignity cutting and improving the performance of machine tool. However, there are many factors to effect to rotational error motion(rotation accuracy). This study studied how rotational error motion is variation when unbalance amount is variation. Rotation accuracy of initial spindle unit is decided depending on parts and assembly such as bearing. When it is rotation, vibration and noise is appeared depending on volume of unbalance amount, so it works to decrease unbalance amount. The purpose of the study tests that unbalance amount how much effects to initial rotation condition. The result of the study shows that accuracy of parts and assembly is highly necessary to reach high rotation accuracy and unbalance amount hardly effects to initial rotation accuracy. However, it shorten spindle's life because vibration and noise is increasing by increasing unbalance amount and we can expect situation that rotation accuracy is falling by long time operation.

동력전달요소에 따른 유정압 주축의 회전정밀도에 관한 연구 (Effects of the Power Transmission Units on the Rotational Accuracy of A Hydrostatic Spindle)

  • Park, C.H.;Ryu, G.W.;Jung, Y.G.
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.59-68
    • /
    • 1995
  • In this study, the effects of the power transmission units on the rotational accuracy are investigated experimentally in a hydrostatic spindle. The effects of warm up time, unbalancing and the position of measuring sensor are pre-examined for the determination of measuring conditions. The misalignment of the power transmission units and the vibration excited by the fluctuation of belt are considered as the dominant parameters of error motion. The variation and scatter of run out at the range of 0 to 3,000rpm in rotational speed are appropriated for the camparison of availabilities of the transmission units to precision spin- dles.

  • PDF

고정밀 스핀들의 회전정밀도 측정 오차 분리법에 관한 연구 (A study on the Error Separation Method in Rotation Accuracy Measurement of High Precision Spindle Unit)

  • 김상화;김병하;진용규
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.78-84
    • /
    • 2014
  • The rotation of a spindle unit must be accurate for high-quality machining and to improve the quality of the machine tools.Therefore, the proper measurement of the rotation accuracy and ensuring a proper analysis are very important. Separate processes are necessary because spindle errors and roundness errors associated with the test balls can both factor into the measured rotation error values. We used three methods to discern test ball errors and analyzed which could be deemed as the most proper technique in a test of the rotation accuracy of the main spindle of a machine tool.

모아레 원리를 이용한 스핀들의 반경방향 회전정도 측정 (Measurement of Radial Error Motions of a Rotating Spindle by Moire Topography)

  • 박윤창;김승우
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2723-2729
    • /
    • 1993
  • Moire principles are applied to the measurement of the spindle radial error motion. As opposed to conventional techniques, no master cylinder or ball is needed in the measurement so that the offset and out-of-roundness errors of the master can be inherently eliminated. Two periodic circular gratings are used, one is made on the spindle and the other is held stationary on the reference frame. When the two gratings are seen superimposed during spindle rotation, an interference fringe pattern is observed from which the information on the eccentricity between the two gratings can be extracted with high precision. The optical design and fringe analysis techniques of a prototype measurement system are described in detail with exemplary measurement results.

회전운동 시스템의 정밀도 시뮬레이션 기술 (Accuracy Simulation of Precision Rotary Motion Systems)

  • 황주호;심종엽;홍성욱;이득우
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.285-291
    • /
    • 2011
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. The error motions of the spindle are not desired errors in the three linear direction motions and two rotating motions. Those are usually due to the imperfect of bearings, stiffness of spindle, assembly errors, external force or unbalance of rotors. The error motions of the spindle have been needed to be decreased to desired goal of spindle's performance. The level of error motion is needed to be estimated during the design and assembly process of the spindle. In this paper, the estimation method for the five degree of freedom (5 D.O.F) error motions of the spindle is suggested. To estimate the error motions of the spindle, waviness of shaft and bearings, external force model was used as input data. And, the estimation models are considering geometric relationship and force equilibrium of the five degree of the freedom. To calculate error motions of the spindle, not only imperfection of the shaft, bearings, such as rolling element bearing, hydrostatic bearing, and aerostatic bearing, but also driving elements such as worm, pulley, and direct driving motor systems, were considered.

자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어 (Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF

자성보상형 공기정압 저널베어링의 회전운동정밀도 시뮬레이션을 위한 실험적 고찰 (Experimental Investigation for Rotational Error Motion Simulation of Inherently Compensated Aerostatic Journal Bearing)

  • 심종엽;황주호;박천홍
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.135-140
    • /
    • 2015
  • It is an important thing for a designer to simulate and predict the performance of a spindle and a rotary table. In addition to the general performance such as static stiffness, the error motion performance information is beneficial to the designer in many cases. However for an aerostatic bearing the fluid film physical status should be calculated in order to simulate those performances and the calculation time is another obstacle for a simple performance simulation. In this paper the investigation on experiment and simulation is performed in order to find a more effective simulation method for the rotational error motion.