• 제목/요약/키워드: Rotational displacement

검색결과 251건 처리시간 0.026초

Conformational Preference of Pseudo-Proline Dipeptide in the Gas Phase and Solutions

  • Park, Hae-Sook;Kang, Young-Kee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.74-74
    • /
    • 2003
  • We report here the results on N-acetyl-N'-methylamide of oxazolidine (Ac-Oxa-NHMe) calculated using the ab initio molecular orbital method with the self-consistent reaction field (SCRF) theory at the HF level of theory with the 6-3l+G(d) basis set. The displacement of the $\square$-CH$_2$ group in proline ring by oxygen atom has affected the structure of proline, cis$\^$∼/ trans equilibrium, and rotational barrier. The up-puckered structure is found to be prevalent for the trans conformers of the Oxa amide. The higher cis populations of the Oxa amide can be interpreted due to the longer distance between the acetyl methyl group and the 5-methylene group of the ring for the trans conformer of the Oxa amide than that of the Pro amide. The changes in charge of the prolyl nitrogen and the decrease in electron overlap of the C$\^$∼/ N bond for TS structures seem to play a role in lowering rotational barriers of the Oxa amide compared to that of the Pro amide. The calculated preferences for cis conformers in the order of Oxa > Pro amides and for trans-to-cis rotational barriers in the order of Pro > Oxa amide in water are consistent with experimental results on Oxa-containing peptides. The pertinent distance between the prolyl nitrogen and the N$\^$∼/ H amide group to form a hydrogen bond might indicate that this intramolecular hydrogen bond could contribute in stabilizing the TS structures of Oxa and Pro amides and play a role in prolyl isomerization.

  • PDF

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

Advantages of intraoral and transconjunctival approaches for posterior displacement of a fractured zygomaticomaxillary complex

  • Yoo, Ji Yong;Lee, Jang Won;Paek, Seung Jae;Park, Won Jong;Choi, Eun Joo;Kwon, Kyung-Hwan;Choi, Moon-Gi
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.36.1-36.6
    • /
    • 2016
  • Background: Fracture of the zygomaticomaxillary complex (ZMC) is one of the most common facial injuries. A previous study has performed 3D analyses of the parallel and rotational displacements that occur in a fractured ZMC. However, few studies have investigated adequate fixation methods according to these displacements. Here, we assessed whether specific approaches and fixation methods for displacement of ZMC fractures produce esthetic results. Methods: Hospital records and pre- and post-surgical computed tomographic scans of patients treated for ZMC fractures at the Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, between January 2010 and December 2015, were selected. Data were analyzed according to the direction of displacement and post-reduction prognosis using a 3D software. Results: With ZMC fractures, displacement in the posterior direction occurred most frequently, while displacement in the superior-inferior direction was rare. A reduction using a transconjunctival approach and an intraoral approach was statistically better than that using an intraoral approach, Gillies approach, and lateral canthotomy approach for a posterior displacement (P < 0.05). Conclusions: When posterior displacement of a fractured ZMC occurs, use of an intraoral approach and transconjunctival approach simultaneously is recommended for reducing and fixing the displaced fragment accurately.

주파수응답함수를 이용한 감쇠가 있는 유한요소모형의 개선 (Updating of a Finite Element Model with a Damping Effect Using Frequency Response Functions)

  • 이건명;이형석;이한희
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.872-880
    • /
    • 2002
  • The finite element analysis is frequently used to predict dynamic responses of complex structures. Since the predicted responses often differ from experimentally measured ones, updating of the finite element models is performed to make the finite element results agree with the measured ones. Among several model updating methods, one is to use FRF(frequency response function) data without a modal analysis. This paper investigates characteristics of the model updating method in order to improve the method. The investigation is focused on how to obtain FRFs for unmeasured rotational displacements and how to consider damping. For the investigation simulated data and experimental data for a cantilever beam are used.

동적유한요소법을 이용한 유연매체의 기하비선형해석 (Geometric Nonlinear Analysis of Flexible Media Using Dynamic FEM)

  • 지중근;홍성권;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.721-724
    • /
    • 2006
  • In the development of sheet-handling machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability. Flexible media is very thin, very light and very flexible so it behaves geometric nonlinearity of large displacement and large rotation but small strain. In this paper, static and dynamic analyses of flexible media are performed by dynamic FEM considering geometric nonlinearity. Mass and tangent stiffness matrices based on the Co-rotational(CR) approach are derived and numerical simulations are performed by full Newton-Raphson(FNR) method and Newmark integration scheme.

  • PDF

대각 선회하는 보의 전개 및 수납 (Deployment or Retraction of Beam with Large Rotational Motion)

  • 김상원;김지환
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.111-117
    • /
    • 2001
  • Present work deals with a study on the deployment or retraction of cantilever beam that includes the rigid-body motion of large displacement of beam through the translational and rotational motions in 2-dimensional plane. The equations of motion are derived with respect to non-Cartesian coordinate system. In the formulation of equations of motion, shear deformations and geometrically non-linear effect are included. An assumed mode method is applied and numerical convergence characteristics are studied also. Types of motion of the moving beam are assumed to be classified as‘slow’or‘fast’motion, and the dynamic characteristics are investigated.

  • PDF

수평가이드에 충돌하는 유연매체의 거동에 관한 연구 (Study on the flexible media behavior impacting on the horizontal guide)

  • 지중근;홍성권;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.388-391
    • /
    • 2006
  • In the development of sheet-handling machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media behaves geometric nonlinearity of large displacement and small strain. In this paper, static and dynamic analyses of flexible media are performed by FEM considering geometric nonlinearity. Linear stiffness matrix and geometric nonlinear stiffness matrix based on the Co-rotational(CR) approach are derived and numerical simulations are performed by Updated Newton-Raphson(UNR) method and Newmark integration scheme.

  • PDF

수직방향 집중하중 상태의 외팔보 거동에 대한 선형 및 비선형적 해석 비교

  • 고정우;빈영빈
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.239-245
    • /
    • 2015
  • In this paper, to examine the difference between the linear and non-linear static, dynamic analysis for a structure, a cantilevered beam was used. Then, an external transverse static and dynamic loads were applied at the free end of the beam. Classical theories were used for the linear analysis and the EDISON CSD solver, co-rotational dynamic FEM program, was used for nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in the linear and nonlinear analysis. Then, normalized displacement of tip of the beam was predicted for different frequency ration and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

  • PDF

Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.971-995
    • /
    • 2014
  • The parts of semi-rigid connected and partially embedded piles in elastic soil, above the soil and embedded in the soil are called the first region and second region, respectively. The upper end of the pile in the first region is supported by linear-elastic rotational spring. The forth order differential equations of both region for critical buckling load of partially embedded and semi-rigid connected pile with shear deformation are established using small-displacement theory and Winkler hypothesis. These differential equations are solved by differential transform method (DTM) and analytical method and critical buckling loads of semirigid connected and partially embedded pile are obtained, results are given in tables and graphs are presented for investigating the effects of relative stiffness of the pile and flexibility of rotational spring.