• Title/Summary/Keyword: Rotational Motion

Search Result 606, Processing Time 0.025 seconds

Complex Modal Testing for Rotating Disks with Support Motion (지지부의 운동을 가진 회전원판의 복소모드시험)

  • Ham, Jong-Seok;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1513-1520
    • /
    • 2000
  • Complex modal testing method for rotating disks with support motion is introduced which handles the pairs of two point excitation and responses of the disk as complex input and output, respectively. This method utilizes the directivity information and the separation over the rotational speed of forward and backward traveling wave modes or bending coupled modes in the directional frequency response functions(dFRFs). This method synthesizes the normal/reverse dFRFs and complex wave dFRF, which were originally applied to rotating shaft and rotating disk, respectively, and is applied to complex system with dynamically coupled rotating disks and shaft. Experiments with a commercial hard disk drive spindle system demonstrate the validity of this method.

  • PDF

A Study on Optimal Design of Perpendicular Guideway Mechanism (수직 이송계의 최적 설계에 관한 연구)

  • 이석우;최헌종;황보승;김대중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.982-986
    • /
    • 2000
  • Perpendicular guideway mechanism has a different behavior with horizontal guideway mechanism due to the slider weight. So, to decrease its weight effect, counter balances such as weight type and hydraulic cylinder type are used. But it can also make another motion behavior by weight rate of slider and counter balance, its connected position. Therefore, it is necessary to find design parameters and analyze their effect. This paper dealt with the optimal design of perpendicular guideway mechanism. For analysis, the theoretic model as same as real machine tool and sib plate to adjust the clearance was used. Rotational angle and displacement of slider, pressure distribution, friction distribution were calculated. Stick slip, intermittent motion of slider according to friction change was adapted to the perpendicular guideway mechanism.

  • PDF

Measurement of Radial Error Motions of a Rotating Spindle by Moire Topography (모아레 원리를 이용한 스핀들의 반경방향 회전정도 측정)

  • 박윤창;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2723-2729
    • /
    • 1993
  • Moire principles are applied to the measurement of the spindle radial error motion. As opposed to conventional techniques, no master cylinder or ball is needed in the measurement so that the offset and out-of-roundness errors of the master can be inherently eliminated. Two periodic circular gratings are used, one is made on the spindle and the other is held stationary on the reference frame. When the two gratings are seen superimposed during spindle rotation, an interference fringe pattern is observed from which the information on the eccentricity between the two gratings can be extracted with high precision. The optical design and fringe analysis techniques of a prototype measurement system are described in detail with exemplary measurement results.

Study on Shape Design of Cylindrical Cam with A Translating Roller Follower (병진운동용 원형 종동절을 가진 원통캠의 형상설계에 관한 연구)

  • Yoon, Ho-Eop;Shin, Joong-Ho;Gu, Byong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1324-1330
    • /
    • 2003
  • A cylindrical cam with a translating roller follower provides to change the rotational motion of the cam to the translation motion of the follower. It's a very useful mechanism in the automation. But, it's very difficult that the shape is defined accurately. This paper proposes a shape design method of the cylindrical cam with a translation roller follower using the relative velocity method$\^$(9,11-13)/ : The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematical constraints. Finally, we present examples in order to prove the accuracy of the proposed methods.

Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force (변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동)

  • Lee, Gun-Myung;Park, O-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$, respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$, and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shatter with low frequencies.

  • PDF

Derivation and Verification of the Relative Dynamics Equations for Aerial Refueling (공중재급유를 위한 상대운동방정식 유도 및 검증)

  • Jang, Jieun;Lee, Sangjong;Ryu, Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • This paper addresses the derivation of 6-DOF equation of Tanker and Receiver's aircraft for aerial refueling. The new set of nonlinear equations are derived in terms of the relative translational and rotational motion of receiver aircraft respect to the tanker aircraft body frame. Further the wind effect terms due to the tanker's turbulence are included. The derivation of absolute dynamic equation for tanker aircraft written in the inertial frame is calculated from the relative dynamics equations of receiver. The derived relative and absolute equations are implemented the simulation in the same flight conditions to verify the relative motion and compare the trim results by using the MATLAB/SIMULINK program.

Design of a Slim-Type Auto-Focusing Module with a Cam Structure (캠 구조를 가지는 초소형 자동초점 모듈 설계)

  • Kim, Kyung-Ho;Lee, Seung-Yop;Shin, Bu-Hyun;Kim, Soo-Kyung
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Recently, the growing market demand for small and slim mobile phone cameras requires the size reduction of the camera module. In this paper, an auto-focusing actuator for camera phones is proposed by converting the rotational motion by a rotary VCM actuator into the linear motion using a novel cam structure. This new concept for auto-focusing module enables the reduction of the module thickness and low power consumption. This paper presents the theoretical analysis and optimal design for VCM actuator, cam structure and preload spring. Finally, the experimental results using a prototype with the size of $9.9{\times}9.9{\times}5.9\;mm^3$ are compared with the theoretical predictions.

  • PDF

A Study on Design of Barrel Cam for Automatic Bulb Production Machine (전구 자동화 생산기계용 바렐 캠의 형상설계에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.33
    • /
    • pp.89-97
    • /
    • 2003
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then detemines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents shape design of the barrel cam in order to prove the accuracy of the proposed methods

  • PDF

On the mechanism of vertical stabilizer plates for improving aerodynamic stability of bridges

  • Chen, Airong;Zhou, Zhiyong;Xiang, Haifan
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.59-74
    • /
    • 2006
  • Vertical stabilizer plates have been found to be an effective aerodynamic measure to improve the aerodynamic stability of bridges either with an open cross section or with a streamlined box cross section in wind tunnel testings and have been adopted in some long span bridges. By taking an open deck II-shaped section and a closed box section as examples, the mechanism of vertical stabilizer plates for improving aerodynamic stability are investigated by using numerical simulation based on Random Vortex Method. It is found that vertical stabilizer plates can increase the amplitude of the heaving motion, and decrease that of the rotational motion of the bridge decks.

Molecular Dynamics Simulation Study on Segmental Motion in Liquid Normal Butane

  • 이송희;김한수
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1068-1072
    • /
    • 1998
  • We present results of molecular dynamic (MD) simulations for the segmental motion of liquid n-butane as the base case for a consistent study for conformational transition from one rotational isomeric state to another in long chains of liquid n-alkanes. The behavior of the hazard plots for n-butane obtained from our MD simulations are compared with that for n-butane of Brownian dynamics study. The MD results for the conformational transition of n-butane by a Poisson process form the total first passage times are different from those from the separate t-g and g-t first passage times. This poor agreement is probably due to the failure of the detailed balance between the fractions of trans and gauche. The enhancement of the transitions t-g and g-t at short time regions are also discussed.