• Title/Summary/Keyword: Rotational Effect

Search Result 708, Processing Time 0.028 seconds

Different Effects of Dopamine on Differential Rotational Mobility between Inner and Outer Monolayer of Synaptosomal Plasma Membrane Vesicles Isolated from Bovine Brain

  • Kim, Hyun-Gang;Choi, Chang-Hwa;Kim, Inn-Se;Chung, In-Kyo;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.409-415
    • /
    • 2000
  • Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to evaluate the effects of dopamine HCl on the range of the rotatioanl mobility of bulk bilayer structure of the synaptosomal plasma membrane vesicles (SPMV) isolated from whole bovine brain. In a dose-dependent manner, dopamine decreased the anisotropy $({\gamma}),$ limiting anisotropy $({\gamma}{infty})$ and order parameter (S) of DPH in the membranes. These indicate that dopamine increased the rotational mobility of the probe in the neuronal membranes. Cationic 1-[4-(trimethylammonio)-phenyl]-6-phenylhexa-1,3,5-hexatriene (TMA-DPH) and anionic 3-[p-(6-phenyl)-1,3,5-hexatrienyl]-phenylpropionic acid (PRO-DPH) were utilized to examine the range of transbilayer asymmetric rotational mobility of the neuronal membranes. Dopamine had a greater increasing effect on the mobility of the inner monolayer as compared to the outer monolayer of the neuronal membranes. It has been proven that dopamine exhibits a selective rather than nonselective fluidizing effect within the transbilayer domains of the SPMV.

  • PDF

Numerical Study on Uniform-Shear new over a Rotating Circular Cylinder (회전하는 원형실린더를 지나는 균일전단 유동에 관한 수치연구)

  • Kang Sang mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.577-589
    • /
    • 2005
  • The present study has numerically investigated two-dimensional laminar flow over a steadily rotating circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder. It aims to find the combined effect of rotation and shear on the flow. Numerical simulations using the immersed boundary method are performed for the ranges of $-2.5{\le}\alpha{\le}2.5$ and $0{\le}K{\le}0.2$ at a fixed Reynolds number of Re=100, where a and K are respectively the dimensionless rotational speed and velocity gradient. Results show that the positive shear, with the upper side having the higher free-stream velocity than the lower one, favors the effect of the counter-clockwise rotation $(\alpha<0)$ but countervails that of the clockwise rotation $(\alpha>0)$. Accordingly, the absolute critical rotational speed, below which vortex shedding occurs, decreases with increasing K for $(\alpha>0)$, but increases for $\alpha>0$. The vortex shedding frequency increases with increasing \alpha (including the negative) and the variation becomes steeper with increasing K. The mean lift slightly decreases with increasing K regardless of the rotational direction. However, the mean drag and the amplitudes of the lift- and drag-fluctuations strongly depend on the direction. They all decrease with increasing K for $\alpha>0$, but increase for $\alpha<0$. Flow statistics as well as instantaneous flow folds are presented to identify the characteristics of the flow and then to understand the underlying mechanism.

A Study on the Optimal Cutting Depth upon Surface Roughness of Al Alloy 7075 in High-speed Machining (알루미늄 합금 7075의 표면 거칠기에 미치는 고속가공의 최적 절삭 깊이에 관한 연구)

  • Bae, Myung-Whan;Park, Hyeong-Yeol;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.74-81
    • /
    • 2013
  • The high-speed machining in the manufacturing industry field has been widely applied for parts of vehicles, aircraft, ships, electronics, etc., recently, because the effect of cost savings for shortening processing time and improving productivity is great. The purpose in this study is to investigate the effect of cutting depth on the surface roughness of workpiece with the spindle rotational speed and feed rate of high-speed machines as a parameter to find the optimal depth in the finishing for ball end mill of the aluminum alloy 7075 which is used much in aircraft parts. When the cutting depth for the respective feed rate and spindle rotational speed is varied from 0.1 mm to 0.7 mm at intervals of 0.2 mm in the wet finishing of the aluminum alloy 7075 by the insoluble cutting oils and high-speed machining used in the rough machining of previous study, the surface roughness values and the cutting temperature are measured. In addition, the cutting surface shapes of test specimens are observed by optical microscope and compared with respectively. It is found that the surface roughness values and the temperature generated during machining are increased as the feed rate and cutting depth are raised, but those are decreased as the spindle rotational speed is increased.

A Geometrically Nonlinear Analysis of the Curved Shell Considering Large Displacements and Large Rotation Increments (대변위 및 대회전을 고려한 만곡된 쉘의 기하학적 비선형 해석)

  • Jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 1992
  • This paper presents geometrically nonlinear formulation of shell problems using the three-dimensional curved shell element, which includs large displacements and large rotations. Formulations of the geometrically nonlinear problems can be derived in a variety of ways, but most of them have been obtained by assuming that nodal rotations are small. Hence, the tangent stiffness matrix is derived under the assumptions that rotational increments are infinitesimal and the effect of finite rotational increments have to be considered during the equilibrium iterations. To study the large displacement and large rotation problems, the restrictions are removed and the formulations of the curved shell element including the effect of large rotational increments are developed in this paper. The displacement based finite element method using this improved formulation are applied to the analyses of the geometrically nonlinear behaviors of the single and double curved shells, which are compared with the results by others.

  • PDF

Effect of different combinations of bracket, archwire and ligature on resistance to sliding and axial rotational control during the first stage of orthodontic treatment: An in-vitro study

  • Chen, Huizhong;Han, Bing;Xu, Tianmin
    • The korean journal of orthodontics
    • /
    • v.49 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • Objective: This study was performed to explore the effect of different bracket, archwire, and ligature combinations on resistance to sliding (RS) and rotational control in first-order angulation. Methods: Three types of brackets (multi-level low friction [MLF], self-ligating, and conventional brackets) coupled with four nickel-titanium archwires (0.012, 0.014, 0.016, and 0.018-inch diameter) and two stainless steel ligatures (0.20 and 0.25 mm) were tested in different first-order angulations ($0^{\circ}$, $2^{\circ}$, $4^{\circ}$, $6^{\circ}$, $8^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$) by using an Instron universal mechanical machine in the dry state at room temperature. RS value was evaluated and compared by one-way ANOVA. Results: Under the same angulation, the RS values showed the following order: conventional brackets > MLF brackets > self-ligating brackets. The RS was the highest for conventional brackets and showed a tendency to increase. The RS for MLF brackets coupled with thinner archwires and ligatures showed a similar tendency as the RS for the self-ligating bracket. In contrast, the RS for MLF brackets coupled with thicker archwires and ligatures increased like that for conventional brackets. MLF brackets showed the greatest range of critical contact angles in first-order angulation. Conclusions: The RS in first-order angulation is influenced by bracket design, archwire, and ligature dimension. In comparison with self-ligating and conventional brackets, MLF brackets could express low friction and rotational control with their greater range of critical contact angles.

Correlations between Axial Rotation of Toric Soft Contact Lenses and Corneal Eccentricity according to the Wearing Time and Gaze Directions (착용시간 및 응시방향에 따른 토릭소프트콘택트렌즈의 축 회전과 각막이심률과의 상관관계)

  • Seo, Woo Hyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Purpose: The present study was aimed to investigate the effect of corneal eccentricity on the axial rotation when wearing toric soft contact lenses were worn for certain time and changing the gaze directions. Methods: Toric soft contact lenses with double thin zone design applied on 85 of with-the-rule astigmatic eyes. Then, rotational direction and amount of contact lenses were measured after 15 minutes and 6 hours of lens wear. The difference was further compared and analyzed according to corneal eccentricity. Results: The rotation of toric lens showed a tendency to rotate to temporal direction in all gaze directions except temporal-upper direction in all groups of corneal eccentricity. The amount of lens rotation in the frontal gaze direction exhibited a negative correlation since the amount was decreased with increasing corneal eccentricity after both 15 minutes and 6 hours of lens wearing. In many cases, the cornea with small eccentricity also showed the lens rotation larger than $10^{\circ}$. The difference in rotational amount after 15 minutes of toric lens wear was small according to the corneal eccentricity however, the change of rotational amount of contact lens according to corneal eccentricity was shown after 6 hours of lens wear. Conclusions: The present study revealed that the amount of axial rotation was largely varied according to the wearer's corneal eccentricity when wearing toric lens and the rotational amount after certain time of lens was also affected by corneal eccentricity. Thus, it is suggested that the selection of toric soft contact lenses based on corneal eccentricity is necessary.

Change in Axial Rotation of Toric Soft Contact Lens according to Tear Volume (눈물양에 따른 토릭 소프트콘택트렌즈의 축 회전양 변화)

  • Seo, Woo Hyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.445-454
    • /
    • 2015
  • Purpose: The present study was aimed to investigate the effect of tear volume on a change of axial rotation according to wearing time of toric soft contact lens and gaze directions. Method: Toric soft contact lenses with double thin zone design applied on 62 eyes. Then, changes in non invasive tear film break-up time and the rotational direction/amount of lens when changing gaze direction were respectively measured after 15 minutes and 6 hours of lens wear. Results: Lens rotation to temporal direction was more found when changing gaze direction after lens wear. However, its rotation was varied according to wearing time and the subjects' tear volume. Furthermore, the frequency of lens rotation to temporal direction was higher in dry eyes compared with normal eyes at nearly all gaze directions after 15 minutes and 6 hour of lens wear. The rotational amount of lens was generally greater in dry eyes after 15 minutes of lens wear. However, its difference between normal eyes and dry eyes was not great after 6 hours of lens wear. Conclusion: The present study revealed that axial rotation of toric soft contact lens was varied according to the wearer's tear volume and lens rotational patterns at the initial, and extending periods of lens wear were different. The change in rotational pattern of toric soft contact lens from these results means the possibility of visual change after extending lens wear, and the identification of its correlation with tear volume suggests the necessity of considering factors for choosing appropriate toric soft contact lens.

Operating Characteristics of Counterrotating Floating Ring Journal Bearings

  • Cheong, Yeon-Min;Kim, Kyung-Woong
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • The steady state performance of the counterrotating floating ring journal bearings is analyzed with isothermal finite bearing theory. The effect of counterrotating speed of the sleeve on the performance of the bearing is investigated. It is shown that counterrotating floating ring journal bearings can have considerable load capacity at the same counterrotating speeds, while conventional circular journal bearings with one fluid film cannot. Investigating the relationship between the frictional torques exerted on the ring due to the inner and outer films and the rotational speed of the ring, the stability of the equilibrium state is identified and the operating characteristics of the counterrotating floating ring journal bearing according to the method of acceleration or deceleration of the rotational speeds of the journal and sleeve are clarified. It is theoretically confirmed that floating ring journal bearings can be used in counterrotating journal-bearing system and become good substitutes for rolling bearings in counterrotating systems.

  • PDF

Updating of a Finite Element Model with a Damping Effect Using Frequency Response Functions (주파수응답함수를 이용한 감쇠가 있는 유한요소모형의 개선)

  • Lee, Geon-Myeong;Lee, Hyeong-Seok;Lee, Han-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.872-880
    • /
    • 2002
  • The finite element analysis is frequently used to predict dynamic responses of complex structures. Since the predicted responses often differ from experimentally measured ones, updating of the finite element models is performed to make the finite element results agree with the measured ones. Among several model updating methods, one is to use FRF(frequency response function) data without a modal analysis. This paper investigates characteristics of the model updating method in order to improve the method. The investigation is focused on how to obtain FRFs for unmeasured rotational displacements and how to consider damping. For the investigation simulated data and experimental data for a cantilever beam are used.