• Title/Summary/Keyword: Rotation Axis

Search Result 628, Processing Time 0.036 seconds

Use of Flattening Filter Free Photon Beams for Off-axis Targets in Conformal Arc Stereotactic Body Radiation Therapy

  • Smith, Ashley;Kim, Siyong;Serago, Christopher;Hintenlang, Kathleen;Ko, Stephen;Vallow, Laura;Peterson, Jennifer;Hintenlang, David;Heckman, Michael;Buskirk, Steven
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.288-297
    • /
    • 2014
  • Dynamic conformal arc therapy (DCAT) and flattening-filter-free (FFF) beams are commonly adopted for efficient conformal dose delivery in stereotactic body radiation therapy (SBRT). Off-axis geometry (OAG) may be necessary to obtain full gantry rotation without collision, which has been shown to be beneficial for peripheral targets using flattened beams. In this study dose distributions in OAG using FFF were evaluated and the effect of mechanical rotation induced uncertainty was investigated. For the lateral target, OAG evaluation, sphere targets (2, 4, and 6 cm diameter) were placed at three locations (central axis, 3 cm off-axis, and 6 cm off-axis) in a representative patient CT set. For each target, DCAT plans under the same objective were obtained for 6X, 6FFF, 10X, and 10FFF. The parameters used to evaluate the quality of the plans were homogeneity index (HI), conformality indices (CI), and beam on time (BOT). Next, the mechanical rotation induced uncertainty was evaluated using five SBRT patient plans that were randomly selected from a group of patients with laterally located tumors. For each of the five cases, a plan was generated using OAG and CAG with the same prescription and coverage. Each was replanned to account for one degree collimator/couch rotation errors during delivery. Prescription isodose coverage, CI, and lung dose were evaluated. HI and CI values for the lateral target, OAG evaluation were similar for flattened and unflattened beams; however, 6FFF provided slightly better values than 10FFF in OAG. For all plans the HI and CI were acceptable with the maximum difference between flattened and unflattend beams being 0.1. FFF beams showed better conformality than flattened beams for low doses and small targets. Variation due to rotational error for isodose coverage, CI, and lung dose was generally smaller for CAG compared to OAG, with some of these comparisons reaching statistical significance. However, the variations in dose distributions for either treatment technique were small and may not be clinically significant. FFF beams showed acceptable dose distributions in OAG. Although 10FFF provides more dramatic BOT reduction, it generally provides less favorable dosimetric indices compared to 6FFF in OAG. Mechanical uncertainty in collimator and couch rotation had an increased effect for OAG compared to CAG; however, the variations in dose distributions for either treatment technique were minimal.

Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery (방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검)

  • Chung, Hyun-Tai;Lee, Re-Na
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.

ANGLE CORRECTION FOR FIVE-AXIS MILLING NEAR SINGULARITIES

  • Munlin, M.;Makhanov, S.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.869-874
    • /
    • 2004
  • The inverse kinematics of five-axis milling machines produce large errors near stationary points of the required surface. When the tool travels cross or around the point the rotation angles may jump considerably leading to unexpected deviations from the prescribed trajectories. We propose three new algorithms to repair the trajectories by adjusting the rotation angles in such a way that the kinematics error is minimized. Given the tool orientations and the inverse kinematics of the machine, we first eliminate the jumping angles exceeding ${\pi}$ by using the angle adjustment algorithm, leaving the jumps less than ${\pi}$ to be further optimized. Next, we propose to apply an angle switching algorithm to compute the rotations and identify an optimized sequence of rotations by the shortest path scheme. Further error reduction is accomplished by the angle insertion algorithm based an o special interpolation to obtain the required rotations near the singularity. We have verified the algorithms by five-axis milling machines, namely, MAHO600E at the CIM Lab of Asian Institute of Technology and HERMLE UWF902H at the CIM Lab of Kasetsart University.

  • PDF

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

A Correlation between Axis-Rotation and Corneal Astigmatism in Toric Soft Contact Lens Fitting (토릭소프트렌즈 피팅 시 축 회전과 각막난시와의 상관관계)

  • Park, Hyung Min;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.189-198
    • /
    • 2014
  • Purpose: The present has analyzed the correlation between the direction of lens and the amount of rotation upon soft toric contact lens fitting after classifying the corneal astigmatism. Methods: Soft toric contact lens was fitted on 114 with-the-rule astigmatic eyes with total astigmatism of at least -0.75 D in their 20s and 30s according to the fitting guideline of the manufacturer and the correlation between the astigmatic degree and the rotational direction/amount of rotation was analyzed by when keeping the eyes on the front and by changing the direction of gaze. As for re-orientation movement. The speed of lens re-orientation and total amount of lens rotation was compared and analyzed by corneal astigmatism after mis-location of lens of $45^{\circ}$ to temporal and nasal direction, respectively. Results: The positive correlations were shown between corneal astigmatism and the direction of lens rotation and between corneal astigmatism and the amount of lens rotation. Meanwhile, the amount of lens rotation was different by the direction of gaze however, there was no correlation with corneal astigmatism. The speed of lens re-orientation was fastest in the group of high astigmatic degree when the lens was mis-located to both temporal and nasal directions. Conclusions: For optimal axis stabilization of toric soft lens, it is proposed that the adjustment of fitting guideline considering corneal astigmatism is necessary since the current fitting guideline is only based on total astigmatism.

Theoretical axial wall angulation for rotational resistance form in an experimental-fixed partial denture

  • Bowley, John Francis;Kaye, Elizabeth Krall;Garcia, Raul Isidro
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.278-286
    • /
    • 2017
  • PURPOSE. The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS. Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS. Low levels of vertical wall taper, ${\leq}10-degrees$, were needed to resist rotational displacement in all wall height categories; 2-to-6-degrees is generally considered ideal, with 7-to-10-degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION. The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form.

Numerical optimization of flow uniformity inside an under body- oval substrate to improve emissions of IC engines

  • Om Ariara Guhan, C.P.;Arthanareeswaran, G.;Varadarajan, K.N.;Krishnan, S.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.198-214
    • /
    • 2016
  • Oval substrates are widely used in automobiles to reduce the exhaust emissions in Diesel oxidation Catalyst of CI engine. Because of constraints in space and packaging Oval substrate is preferred rather than round substrate. Obtaining the flow uniformity is very challenging in oval substrate comparing with round substrate. In this present work attempts are made to optimize the inlet cone design to achieve the optimal flow uniformity with the help of CATIA V5 which is 3D design tool and CFX which is 3D CFD tool. Initially length of inlet cone and mass flow rate of exhaust stream are analysed to understand the effects of flow uniformity and pressure drop. Then short straight cones and angled cones are designed. Angled cones have been designed by two methodologies. First methodology is rotating flow inlet plane along the substrate in shorter or longer axis. Second method is shifting the flow inlet plane along the longer axis. Large improvement in flow uniformity is observed when the flow inlet plane is shifted along the direction of longer axis by 10, 20 and 30 mm away from geometrical centre. When the inlet plane is rotated again based on 30 mm shifted geometry, significant improvement at rotation angle of $20^{\circ}$ is observed. The flow uniformity is optimum when second shift is performed based on second rotation. This present work shows that for an oval substrate flow, uniformity index can be optimized when inlet cone is angled by rotation of flow inlet plane along axis of substrate.

Detection of Rotation in Jump Rope using 6-axis Accelerometer Gyro Sensor (6축 가속도 자이로 센서를 이용한 줄넘기 회전운동 검출)

  • Kim, Wanwoo;Heo, Gyeongyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.285-293
    • /
    • 2017
  • Jump rope has two motions. It starts as hand motion and ends as jump motion. Therefore, two motions should be considered together to detect rotations accurately. But previous researches only consider one of the two motions as in push-up, sit-up, lift dumbbells etc, which results in inaccurate detection of rotations. In this paper, detection of rotation in jump rope using two motions through 6-axis accelerometer gyro sensor is proposed. Jump motion is detected using accelerometer sensor and hand motion is detected using gyro sensor. Also start point and end point of jump rope is detected using magnitude and standard deviation of accelerometer and gyro sensor values. The count of rotation is detected using y-axis of gyro sensor value. Y-axis of gyro sensor value indicate hand motion of jump rope motion. The usefulness of the proposed method is confirmed through experimental results.

Kinematic Skill Analysis of the Turn Motion and Release Phase in Female Hammer Throw (여자해머던지기 턴 동작과 투사국면에 대한 운동학적 기술 요인 분석)

  • Chung, Nam-Ju;Kim, Jae-Pil;Song, Ok-Heung
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.429-436
    • /
    • 2010
  • The purpose of this study was to analyze the kinematic factors and throwing variables for the 3-turn and 4-turn techniques and for release as well as to provide technical advice for improving athletic performance in hammer throwing. Data analysis led to the following conclusions: To increase the rotation speed for the 3-turn and 4-turn techniques, the time elapsed during the 1-foot support period should be decreased the distance between the rotating foot and the rotation axis should be small and the height of the hip joint should be increased at the times of release The throwing angle at the moment of release should be more than 40 degrees, and the throwing position should be taken vertically high at the shoulder joints. To accelerate the motion of the hammer, the speed should not be reduced during the 1-foot support period but should be increased during the 2-foot support period for much greater acceleration. In the 3-turn technique, the angles of the shoulder axis and hummer string should be dragged angle at the maximum point and lead angle at the minimum point, and dragged angle at the maximum and minimum points in the 4-turn at the time of relase The upper body should be quickly bent backward, the knee angle should be extended, and the angles of the shoulder axis and hammer string should be dragged angle close to 90 degrees.

Estimation of Rotation Center and Rotation Angle for Real-time Image Stabilization of Roll Axis. (실시간 회전영상 안정화를 위한 회전중심 및 회전각도 추정 방법)

  • Cho, Jae-Soo;Kim, Do-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.153-155
    • /
    • 2004
  • This paper proposes a real-time approach on the rotational motion estimation and correction for the roll stabilization of the sight system. This method first estimates a rotation center by the least-mean square algorithm based on the motion vectors of some feature points. And, then, a rotation angle is searched for a best matching block between a reference block image and seccessive input images using MPC(maximum pixel count) matching criterion. Finally, motion correction is performed by the bilinear interpolation technique. Various computer simulations show that the estimation performance is good and the proposed algorithm is a real-time implementable one to the TMS320C6415(500MHz) DSP.

  • PDF