• 제목/요약/키워드: Rotating speed

검색결과 1,383건 처리시간 0.029초

숄더 지름과 회전 속도에 따른 AZ31 마그네슘합금의 마찰교반접합 특성 (Characteristics of Friction Stir Welded AZ31 Mg Alloys with Shoulder Diameter and Rotating Speed)

  • 전상혁;고영봉;박경채
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.36-41
    • /
    • 2013
  • Friction stir welding (FSW) is a relatively new joining technique particularly for magnesium and aluminum alloys that are difficult to fusion weld. In this study, AZ31 Mg alloys were joined by FSW with shoulder diameter 11, 19 mm and rotating speed 900, 1200, 1500, 1800 rpm. The shoulder diameter and welding speed depended on the heat input during FSW process. As a result, the microstructures of stir zone were a fine grain by dynamic recrystallization. According to the larger shoulder diameter and the higher rotating speed, refined grain sizes of stir zone were grown by higher heat input, and the microhardness of stir zone was lower. The tensile strength at the shoulder diameter 19 mm, rotating speed 900 rpm was obtained maximum value. This value compared with the base metal was over 93%.

Experimental Investigation of Blade-To-Blade Pressure Distribution in Contra-Rotating Axial Flow Pump

  • Cao, Linlin;Watanabe, Satoshi;Honda, Hironori;Yoshimura, Hiroaki;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권4호
    • /
    • pp.130-141
    • /
    • 2014
  • As a high specific speed pump, the contra-rotating axial flow pump with two rotors rotating reversely has been proved with higher hydraulic and cavitation performance, while in our previous researches, the potential interaction between two blade rows was distinctly observed for our prototype rotors designed with equal rotational speed for both front and rear rotors. Based on the theoretical and experimental evidences, a rotational speed optimization methodology was proposed and applied in the design of a new combination of contra-rotating rotors, primarily in expectation of the optimized blade pressure distributions as well as pertinently improved hydraulic performances including cavitation performance. In the present study, given one stationary and two rotating frames in the contra-rotating rotors case, a pressure measurement concept taking account of the revolutions of both front and rear rotors simultaneously was adopted. The casing wall pressure data sampled in time domain was successfully transferred into space domain, by which the ensemble averaged blade-to-blade pressure distributions at the blade tip of two contra-rotating rotors under different operation conditions were studied. It could be seen that the rotor pair with the optimized rotational speed combination as well as work division, shows more reasonable blade-to-blade pressure distribution and well weakened potential interaction. Moreover, combining the loading curves estimated by the measured casing wall pressure, the cavitation performance of the rotor pairs with new rotational speed combination were proved to be superior to those of the prototype pairs.

열박음 로터에서 간섭량의 강성 효과 (Stiffness effect of fitting interference for a shrunk rotor)

  • 김영춘;박희주;박철현;김경웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.319-324
    • /
    • 2003
  • In general industrial rotating machinery is operated under 3,600 rpm as rotating speed and designed to have critical speed that is above operating speed. So, there was no problem to operate rotating machine under critical speed. But nowadays, they should be operated more than the frist critical speed as usual with the trend of high speed, large scale and hish precision in industries. In case of the large rotor assembly as the trend of large scale, using fitting method of disk or cylinder on shaft is rising for the convenience of assembly and cutting down of manufacturing cost. The shrink fitting is used to assemble lamination part on shaft for manufacturing of rotor of motor or generator in many cases and also is widely used for other machinery. In rotating system, which is compose of rotor and bearing, the critical speed is determined from inertia and stiffness for the rotor and bearings. In case of fitting assembly, analysis and design of the rotor is not easy because the rotor stiffness is determined depend on a lot of factors such as shaft material/dimension, disk material/dimension and assembled interference etc. Therefore designer who makes a plan for hish-speed rotating machine should design that the critical speed is located out of operating range, as dangerous factors exist in it. In order to appropriate design, an accurate estimation of stiffness and damping is very important. The stiffness variation depend on fitting interference is a factor that changes critical speed and if it's possible to estimate it, that Is very useful to design rotor-bearing system. In this paper, the natural frequency variation of the rotor depends on fitting interference between basic shaft and cylinder is examined by experimentation. From the result, their correlation is evaluated quantitatively using numerical analysis that is introduced equivalent diameter end the calculation criteria is presented for designer who design fitting assembly to apply with ease for determination of appropriate interference.

  • PDF

미소채널 내 회전교반기와 진동교반기에 의한 혼합향상의 연구 (A Study on Mixing Enhancement by Rotating and Oscillating Stirrers in the Micro Channel)

  • 김용대;맹주성;안상준
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.430-437
    • /
    • 2006
  • The mixing effect is studied by comparing rotating and oscillating stirrers in the micro channel. The cases of Re=10 to 80 with various stirring speeds are considered to analysis the effect of Re and stirrer speed for the mixing. Under Re=20, the oscillating stirrer represents better mixing rate than the rotating stirrer up to the critical stirrer speed which has a maximum efficiency. Over Re=30, the results of oscillating and rotating stirrer show that the faster the stirrer speed, the higher the mixing effect within the concerned stirrer speed range and the oscillating stirrer keeps the higher mixing rate. It was found that the mixing effect is a function which has an optimum of the Reynolds number and the stirrer speed. The D2Q9 Lattice Boltzmann Method is used due to the merits of calculation for the unsteady flow with moving boundary.

강제와류 유수분리기의 걔발 (Development of a Forced-Vortex Oil-Water Separator)

  • 박외철;이광진
    • 한국안전학회지
    • /
    • 제12권2호
    • /
    • pp.22-26
    • /
    • 1997
  • A small scale centrifugal oil separator consisted of two concentric tubes was fabricated for spilt oil recovery. With speed control of the inner tube, its performance of oil separation was investigated. Oil-water mixture is separated by forced vortex motion with the rotating inner tube. Velocity and pressure distributions in the tubes were calculated. Control of rotating speed, which is the most influencing parameter, showed an optimum value 946rpm corresponding to the acceleration of 20g at the inner tube surface. Separation performance was suddenly deteriorated at rotating speed higher than 1200rpm.

  • PDF

회전 외팔보의 과도상태 진동시 발생하는 응력분포 연구 (Study on the Stress Distribution of a Rotating Cantilever Beam in Transient Vibration)

  • 최창민;유홍희;양현익
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.306-311
    • /
    • 2000
  • The stress distribution of a rotating cantilever beam in transient vibration is investigated in this paper. The equations of motion of the rotating bean are derived and numerical results are obtained. The tensile and bending stresses which occur when the beam rotates with the tuned angular speed or passes through the tuned angular speed are obtained. Since those stresses are usually significant during the rotational motion, it is important to estimate them accurately in the design of the rotating structure.

  • PDF

공기 유동 효과를 고려한 회전 디스크의 진동 특성 (I) - 이론적 해석 - (Vibration Characteristics of Rotating Disks with Aerodynamic Effect (I) - Theoretical Analysis -)

  • 이승엽;임효석
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.127-134
    • /
    • 2008
  • The aerodynamically excited vibration and natural frequency of rotating disks are analytically studied in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and drag forces. The explicit expressions on natural frequencies of the air coupled disk are obtained as functions of the aerodynamic coefficients. for the three cases where the disk rotates in three different cases (in vacuum, in open air without enclosure, and close to rigid wall). The theoretical results give that the natural frequencies of rotating disks in air are smaller than those in vacuum, because the effect of the added fluid mass decreases the frequencies. This paper also proposes an analytical method to predict the flutter speed of a rotating disk.

공기 유동 효과를 고려한 회전 디스크의 진동 특성 (II) - 실험적 검증 - (Vibration Characteristics of Rotating Disks with Aerodynamic Effect (II) - Experimental Verifications -)

  • 임효석;임빛;이승엽
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.135-142
    • /
    • 2008
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of rotating disks are investigated in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments performed using a vacuum chamber and ASMO/DVD disks rotating in vacuum, open and enclosure in several gaps with stationary wall give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

극직교 이방성 회전원판의 진동특성 및 임계속도 (Vibration Analysis and Critical Speeds of Rotating Polar Orthoropic Disks)

  • 구교남;한재흥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.337-340
    • /
    • 2005
  • Rotating annular disks are widely used in data storage devices such as CDs, DVDs(digital versatile disks), and HDs(hard disks). Higher data transfer rate in data storage disks could not be achieved by polycarbonate disks in the present market. The problem can be solved by applying the fiber-reinforce composite materials to the disks. In this paper, an application of composite materials to rotating disks is proposed to increase the critical speed. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating composite by the Galerkin method. The results show that the radially reinforced disk is more effective in increasing critical speed than the circumferentially reinforced disk.

  • PDF

테두리가 보강된 회전 원판의 반-유한요소해석 (Semi-finite Element Analysis of Rotating Disks Reinforced at Rim)

  • 구교남
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.537-544
    • /
    • 2009
  • In order to increase the critical speed of rotating disks of which functional material could not be changed such as in optical and magnetic data storage disks, a new disk with a rim reinforced by composite material is proposed and its concept is verified by numerical analysis. Stress distributions are found for the rotating disk composed of two annular disks of which materials are isotropic inside and orthotropic outside. Dynamic equation is formulated in order to calculate the natural frequency and critical speed. For the solution of lateral vibration, a rotational symmertry condition is applied along circumferential direction and a finite element interpolation with Hermite polynomial is performed along the radial direction to obtain a proper solution. According to the results, reinforcing a disk at rim makes critical speeds drastically increased, and induces a buckling phenomenon in mode (0,0) which occurs over the lowest critical speed.