• Title/Summary/Keyword: Rotating disk electrode

Search Result 47, Processing Time 0.019 seconds

Formic Acid Oxidation Depending on Rotating Speed of Smooth Pt Disk Electrode

  • Shin, Dongwan;Kim, Young-Rae;Choi, Mihwa;Rhee, Choong Kyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.82-86
    • /
    • 2014
  • This work presents the variation of formic acid oxidation on Pt depending on hydrodynamic condition using a rotating disk electrode. As the rotating speed increases, the oxidation rate of formic acid decreases under voltammetric and chronoamperometric measurements. The coverages of poison formed from formic acid during the chronoamperomertric investigations decrease when the rotating speed increases. As the roughness factor of Pt electrode surface increases, on the other hand, the current density of formic acid oxidation increases. These observations are discussed in terms of the tangential flow along Pt electrode surfaces generated by the rotating disk electrode, which reduces a contact time between formic acid and a Pt site, thus the formic acid adsorption.

APPLICATION OF HP-DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS TO THE ROTATING DISK ELECTRODE PROBLEMS IN ELECTROCHEMISTRY

  • Okuonghae Daniel
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.1-20
    • /
    • 2006
  • This paper presents the interior penalty discontinuous Galerkin finite element methods (DGFEM) for solving the rotating disk electrode problems in electrochemistry. We present results for the simple E reaction mechanism (convection-diffusion equations), the EC' reaction mechanism (reaction-convection-diffusion equation) and the ECE and $EC_2E$ reaction mechanisms (linear and nonlinear systems of reaction-convection-diffusion equations, respectively). All problems will be in one dimension.

Electrocatalysis of Oxygen Reduction by Cu-containing Polymer Films on Glassy Carbon Electrodes

  • Kim, Jong-Won;Gewirth, Andrew A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1322-1328
    • /
    • 2007
  • The catalytic activity of poly[(2,2'-bipyridine)copper(II)-μ4-oxalato] coated on a glassy carbon electrode (GCE) for O2 electroreduction is examined using cyclic voltammetry and rotating disk electrode techniques. The cyclic voltammograms show that O2 is electroreduced on pBpCuOx-coated GCE surfaces at a peak potential of ? 0.25 V in pH 4.7 acetate buffer media. The electroreduction of O2 on pBpCuOx-coated GCE occurs at 450 mV more positive potential than that found at a bare GCE. The catalytic activity originates from Cu(II) coordinated by bipyridine in the complexes and the polymer type Cu-complex films exhibit an enhanced stability compared to monomeric Cu-complexes during the O2 electroreduction. The rotating disk electrode measurements reveal that the electroreduction of O2 on pBpCuOx-coated GCE is a four-electron process. Kinetic parameters for O2 reduction on pBpCuOx-coated GCE are obtained from rotating disk experiments and compared with those on bare glassy carbon electrode surfaces.

Mass Transfer to Amalgamated Copper Rotating Disk Electrode

  • Sulaymon, Abbas H.;Abbar, Ali H.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.165-171
    • /
    • 2012
  • An experimental study of mass transfer to an amalgamated copper rotating disc electrode has been employed to determine an empirical correlation for the mass transfer rate in laminar flow. The study was performed in a three-electrodes configuration using 0.1 M boric acid and 0.1M potassium chloride as supporting electrolyte with Zn (II) concentration in the range (25-100 mg $dm^{-3}$). Polarization curves at different zinc ion concentration are reported. Hydrogen and oxygen reduction has also been considered.The diffusion coefficients and mass transfer coefficient were obtained using limiting diffusion current technique based on zinc ion reduction. A least squares analysis indicates that the laminar flow results for 13067 < Re > 57552 and 550 < Sc > 1390 can be correlated by the following equation with correlation coefficient (CR) equal to 0.98: $sh=0.61Re^{0.5}Sc^{1/3}$.

Formation of Soluble Intermediate During the Electrochemical Crystallization of Lead Dioxide

  • Hwang, Eui-Jin;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.390-393
    • /
    • 1994
  • Details on the electrochemical formation of lead dioxide from aqueous plumbous ion are studied by measuring current-time behavior with potential step method at a rotating platinum electrode. A cubic law without induction period can be applied to the crystallization of lead dioxide in both acetate and nitrate media. In the course of the mechanistic study, the presence of a soluble intermediate during the nucleation step is clearly observed with a rotating ring-disk electrode. Decrease in the anodic ring current due to the reduction of soluble species formed during the anodic crystallization of lead dioxide at disk is detected.

Composite coating of Suspended Inert Particles in the Rotating Disk Electrode (회전원판 전극에서 비활성 현탁분체의 복합도금)

  • 박세용;김래현;김진성;최창균
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.73-81
    • /
    • 1992
  • The composite coating of suspended inert particles $\alpha$-Al2O3 and copper from acid sulphate bath was investigated at the Rotating Disk Electrode. Effects of rotation speeds of electrode, physical properties of electrolyte, the size and concentration of suspended particles on the codeposition ratio of Al2O3 and the enhancement of mass transfer of copper ions were examined. Particularly, new experimental method for the measurement of the codeposition ratio was suggested and also the characteristics of the composite coating layer were measured by Rutherford Backscattering Spectrometry. Mass transfer of suspended particles system were increased up to 40% more than those of without suspended particles system. Optimum conditions of current density, hydrodynamics of RDE, and particles concentration showing maximum codeposition ratio were appeared in our experimental ranges. It was shown that the suspended inert particles were codeposited mainly near the surface of the composite coating layer.

  • PDF

Mechanistic Studies on the Formation of Soluble Intermediate during the Electrochemical Nucleation of Lead Dioxide

  • Hwang Euijin;Cho Keunchang;Kim Ho Il;Kim Hasuck
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1054-1058
    • /
    • 1994
  • Different behavior on the formation of soluble intermediate was observed depending on the substrate employed during the nucleation of lead dioxide from plumbous ion using a rotating ring-disk electrode. It was found that no soluble intermediate was formed at glassy carbon electrode, while the presence of soluble intermediate could be detected at platinum substrate. From the different anodic behavior of two substrates, the formation of a probable Pb(Ⅲ) soluble intermediate was suggested. A most probable nucleation mechanism at the platinum substrate involving a second order chemical reaction was derived on the basis of rotating disk electrode experiments.

Corrosion and Passivation of Nickel Rotating Disk Electrode in Borate Buffer Solution (Borate 완충용액에서 니켈 회전원판전극의 부식과 부동화)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.533-539
    • /
    • 2013
  • The electrochemical corrosion and passivation of Ni rotating disk electrod in borate buffer solution was studied with potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of nickel and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, impedance data, the rotation speed of Ni-RDE and the pH dependence of corrosion potential and current. Based on the EIS data, an equivalent circuit was suggested. In addition, carefully measured were the electrochemical parameters for specific anodic dissolution regions. It can be concluded from the data collected that the $Ni(OH)_2$ oxide film, which is primarily formed by passivation, is converted to NiO by dehydration under the influence of an electrical field.

Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes (고분자 전해질 연료전지 캐소드용 코발트-폴리아닐린-탄소로 구성된 비귀금속 촉매의 제조 및 특성 평가)

  • Choi, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • In order to overcome the cost issue for commercialization of polymer electrolyte membrane fuel cell (PEMFC), this research was conducted for replacing platinum cathode catalyst with non-precious metal catalyst. The non-precious metal catalyst (Co-PANI-C) was synthesized by the simple reduction method with polyaniline (PANI), carbon black, and cobalt precursor without any heat treatment. Characterization of new Co-PANI-C composite catalysts was done by the measurement of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for structure analysis and performed by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) for electrochemical analysis. As a result, Co-PANI-C catalyst showed 60 mV lower on-set potential for oxygen reduction reaction (ORR) than Pt/C catalyst, but the overall reduction current of Co-PANI-C catalysts by ORR was still smaller than that of Pt/C. In addition, the ORR behavior of Co-PANI-C catalysts depending on the rotation speed of electrode and the stability of Co-PANI-C catalyst under potential cycling and the performance of fuel cell conditions are also discussed.