DOI QR코드

DOI QR Code

Mass Transfer to Amalgamated Copper Rotating Disk Electrode

  • Sulaymon, Abbas H. (Environmental Engineering Department, Baghdad University) ;
  • Abbar, Ali H. (Department of Chemical Engineering, Qadessyia University)
  • Received : 2012.11.30
  • Accepted : 2012.12.30
  • Published : 2012.12.31

Abstract

An experimental study of mass transfer to an amalgamated copper rotating disc electrode has been employed to determine an empirical correlation for the mass transfer rate in laminar flow. The study was performed in a three-electrodes configuration using 0.1 M boric acid and 0.1M potassium chloride as supporting electrolyte with Zn (II) concentration in the range (25-100 mg $dm^{-3}$). Polarization curves at different zinc ion concentration are reported. Hydrogen and oxygen reduction has also been considered.The diffusion coefficients and mass transfer coefficient were obtained using limiting diffusion current technique based on zinc ion reduction. A least squares analysis indicates that the laminar flow results for 13067 < Re > 57552 and 550 < Sc > 1390 can be correlated by the following equation with correlation coefficient (CR) equal to 0.98: $sh=0.61Re^{0.5}Sc^{1/3}$.

Keywords

References

  1. C. M. A. Brett, Electrochemistry Principles, Methods and Applications, Oxford Science Publication (2002).
  2. V. G. Levich, Physicochemical Hydrodynamics, Prentic Hall, Englewood Cliffs, New Jersy (1962).
  3. D. Pletcher, I. Whyte, F. C. Walsh and J. P. Millington, J. Appl. Electrochem., 21, 659 (1991). https://doi.org/10.1007/BF01034042
  4. K. Rajesshwar and J. G. Ibanez, Environmental Electrochemistry: fundamentals and Applications in Pollution Sensors and Pollutant Treatment, Academic Press, San Diego (1997).
  5. R. Bertazzoli, R. C. Widner, M. R. V. Lanza, R. A. D. Iglia and M. F. B Sousa, J. Braz. Chem. Soc., 8, 487 (1997). https://doi.org/10.1590/S0103-50531997000500009
  6. R. C. Widner, M. F. B. Sousa and R. Bertazzoli, J. Appl. Electrochem., 28, 201 (1998).
  7. R. Bertazzoli, C. A. Rodrigues, E. J. Dakan, M. T. Fukunaga, M. R. V. Lanza, R. R. Leme and R. C. Winder, Braz. J. Chem. Eng., 15, 396 (1998).
  8. A. R. Ragninic, R. A. DI Iglia, W. Bizzo and R. Bertazzoli, Water Res., 34, 3269 (2000). https://doi.org/10.1016/S0043-1354(00)00063-4
  9. M. R. V. Lanza and R. Bertazzoli, J. Appl. Electrochem., 30, 61 (2000). https://doi.org/10.1023/A:1003836418682
  10. M. Matlosz and J. Newman, J. Electrochem. Soc., 133, 1850 (1986). https://doi.org/10.1149/1.2109035
  11. J. Ellison and I. corent, J. Electrochem. Soc., 118, 68-72 (1971). https://doi.org/10.1149/1.2407954
  12. M. Charles, J. Moher and J. Newman, J. Electrochem. Soc., 123, 1687-1691 (1976). https://doi.org/10.1149/1.2132668
  13. O. T. Hanna, O. C. Sandall and G. Ruiz-Ibanez, Chem. Eng. Sci., 43, 1410-1407 (1988). https://doi.org/10.1016/0009-2509(88)85115-7
  14. S.-C. Yen, J.-S. Wang and T. W. Chapman, J. Electrochem. Soc., 139, 2231-2238 (1992). https://doi.org/10.1149/1.2221207
  15. E. O. Cobo and J. B. Bessone, J. Appl. Electrochem., 28, 803-809 (1998). https://doi.org/10.1023/A:1003439410053
  16. L. Makhloufi, Chem. Eng. J., 130, 39-44 (2007). https://doi.org/10.1016/j.cej.2006.10.026
  17. T. R. Ralph, M. L. Hitchman, J. P. Millington and F. C. Walsh, Electrochimica Acta., 51, 133-145 (2005). https://doi.org/10.1016/j.electacta.2005.04.012
  18. H. V. K. Udupa and N. Nagendra, The Society of Advancement of Electrochemical Science and Technology, New Delhi, 404 (1988).
  19. R. N. Adams, Electrochemistry at Solid Electrodes, Edited by J. B. Allen (1969).
  20. R. Greef, R. Peat, L. M. Peter and D. Pletcher, In Instrumental Methods in Electrochemistry, Chichester, Ellis Horwood (1990).
  21. J. Leffler and H. T. Cullinan, Ind. Eng. Chem. Fundam., 9, 88-93 (1970). https://doi.org/10.1021/i160033a014
  22. A. R. Gordon, J. Chem. Phys., 5, 52 (1937).
  23. V. G. Gurjar and I. M. Sharma, J. Appl. Electrochem., 19, 1113 (1989).
  24. J. T Kim and J. Jacob, J. Electrochem. Soc., 127, 8-15 (1980). https://doi.org/10.1149/1.2129646
  25. M. R. V. Lanze and R. Bertazzoli, J. Appl. Electrochem., 30, 61-70 (2000). https://doi.org/10.1023/A:1003836418682
  26. A. H. Abbar and A. H. Sulaymon, Electrochim. Acta, 53, 1671-1679 (2007). https://doi.org/10.1016/j.electacta.2007.07.075

Cited by

  1. A review of electrocoagulation technology for the treatment of textile wastewater vol.33, pp.3, 2017, https://doi.org/10.1515/revce-2016-0019
  2. Kinetics and mechanisms of gold dissolution by ferric chloride leaching vol.115, 2018, https://doi.org/10.1016/j.mineng.2017.10.017
  3. Mechanism and kinetics of gold leaching by cupric chloride vol.169, 2017, https://doi.org/10.1016/j.hydromet.2016.12.008