• Title/Summary/Keyword: Rotating Disks

Search Result 102, Processing Time 0.024 seconds

Dynamic Characteristics Research of DVD Disk due to Disk-Wall Gap (간격 변화에 따른 DVD 디스크의 동특성 연구)

  • 임효석;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1095-1100
    • /
    • 2003
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of DVD disks are investigated in this paper. The experimental results are compared with the theoretical analyses where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments are performed using a vacuum chamber and DVD disks rotating in vacuum, open and enclosure with several different gaps between disk and wall. The following three results are given. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency decreases as the disk-wall gap is decreased. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

  • PDF

Permeation Characteristics of the Submerged Membrane Module Using the Rotating Disks (회전원판을 이용한 침지형 분리막 모듈의 투과특성)

  • Chung Kun-Yong;Cho Young-Su;Kim Jong-Pyo
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The permeation experiments were carried out for the submerged membrane module equipped with self-designed rotating disks in order to determine the effect of fouling reduction and the optimum operating conditions as a function of operating time. Kaolin and bentonite particles were used to prepare various concentrations of feed solution. Every experiment was continued until 60 minutes at various rotating disk speeds up to 120 rpm. The suction pressure for kaolin solutions decreased to 28% by using rotating disk to decrease the fouling. Also, the optimum permeation flux decreased as kaolin concentration increased, and became 60 to 70 LMH for 0.4 wt% of kaolin solution. The suction pressure for bentonite experiment approached to 0 mmHg at 30 LMH and above 80 rpm rotating disk speed.

Numerical Simulations for Suppressing Transverse Vibration of a very Flexible Rotating Disk using Air Bearing Concept (고속 회전 유연 디스크의 진동 저감용 공기 베어링 해석)

  • Lee Sung-ho;Rhim Yoon-chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.175-185
    • /
    • 2004
  • Rotating disks are used in various machines such as data storage device, gyroscope, circular saw, etc. Transverse vibration of a rotating disk is very important for the performance of these machines. This work proposes a method to suppress transverse vibration of a very flexible rotating disk in non-contacting manner. A system considered in this study is a very flexible rotating disk with a thrust bearing pad which is located underneath the rotating disk. The pressure force generated in the gap between the rotating disk and the thrust pad pushes the rotating disk in the direction of axis of rotation while the centrifugal force and the elastic recovery force push the rotating disk in reverse direction. The balance between these forces suppresses the transverse vibration of the rotating disk. A coupled disk-fluid system is analyzed numerically. The finite element method is used to compute the pressure distribution between the thrust pad and the rotating disk while the finite difference method is used to compute the transverse vibration of a rotating disk. Results show that the transverse vibration of the rotating disk can be suppressed effectively for certain combination of air bearing and operating parameters.

  • PDF

Limit elastic speed analysis of rotating porous annulus functionally graded disks

  • Madan, Royal;Bhowmick, Shubhankar;Hadji, Lazreg;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.375-388
    • /
    • 2022
  • In this work, limit elastic speed analysis of functionally graded porous rotating disks has been reported. The work proposes an effective approach for modeling the mechanical properties of a porous functionally graded rotating disk. Four different types of porosity models namely: uniform, symmetric, inner maximum, and outer maximum distribution are considered. The approach used is the variational principle, and the solution has been achieved using Galerkin's error minimization theory. The study aims to investigate the effect of grading indices, aspect ratio, porosity volume fraction, and porosity types on limit angular speed for uniform and variable disk geometries of constant mass. To validate the current study, finite element analysis has been used, and there is good agreement between the two methods. The study yielded a decrease in limit speed as grading indices and aspect ratio increase. The porosity volume fraction is found to be more significant than the aspect ratio effect. The research demonstrates a range of operable speeds for porous and non-porous disk profiles that can be used in industries as design data. The results show a significant increase in limit speed for an exponential disk when compared to other disk profiles, and thus, the study demonstrates a range of FG-based structures for applications in industries that will not only save material (lightweight structures) but also improve overall performance.

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

Analysis for Unstable Phenomenon of Rotating Discs Due to Head Interface (헤드 간섭으로 인한 회전 디스크의 불안정 현상에 대한 분석)

  • Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1609-1614
    • /
    • 2000
  • This paper presents the modeling, theoretical formulation, and stability analysis for a combined system of a spinning disk and a head that contacts the disk. In the analytical model, head interface is considered by a rotating mass-spring-damper system together with a frictional follower force on the damped annular disks. The method of multiple scales is utilized to perform the stability analysis that shows the existence of instability associated with parametric resonances. This instability can be effectively stabilized by increasing the damping ratio of a disk.

  • PDF

Control of Processing Conditions for Improvement of vibration Characteristics of Injection Molded Disk (사출성형 디스크의 진동특성 향상을 위한 공정조건 제어)

  • Sin Hyo-Chol;Nam Ji-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.615-621
    • /
    • 2006
  • Increased application of optical disks requires more improved dynamic stability of rotating disks. In this study, a new concept of controlling the processing conditions of injection molded disks was developed to improve vibration characteristics. The critical speed, which shows stiffness and dynamic stability of disk, is affected by the residual stress distribution; this varies as functions of distance from the gate and processing condition. The critical speed of disk was calculated with the initial stress taken into consideration, which was determined from injection molding simulation. Choosing melt temperature, mold temperature, filling speed and packing pressure as design parameters, critical speed is maximized with the method of response surface. It is shown that the stability of injection molded disk has been improved for the new condition obtained as a result of the study proposed.

A Study on the Torsional Vibration Measurement of the Horizontal Shaft with Disks (단을 가진 수평축의 비틀림진동 측정에 관한 연구)

  • 박일수;안찬우;김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.3-8
    • /
    • 1997
  • This parer was presented for the experimental results of torsional vibrations of the horizontal rotating shaft with three disks. The torsional vibrations meter used is a laser system for non-contact measurement of torsional angular vibration velocity and torsional angular vibration displacement. The distance between the disks war changed; the one that had 76mm of disk distance war called basic model, and another that had 106mm of disk distance wide model, and other that had 46mm of disk distance narrow model. In each model, outer diameter of disk was 40mm. And 45mm, or 50mm was also used to extend the effective range of frequencies. The angula vibration displacement and the angular vibration velocity in its torsional vibration were measured to obtain the stable and the unstable regions.

  • PDF

Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid (압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.