• 제목/요약/키워드: Rotating Cavitation

검색결과 47건 처리시간 0.018초

Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities

  • Yamamoto, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.40-54
    • /
    • 2009
  • Cavitation instabilities in turbo-machinery such as cavitation surge and rotating cavitation are usually explained by the quasi-steady characteristics of cavitation, mass flow gain factor and cavitation compliance. However, there are certain cases when it is required to take account of unsteady characteristics. As an example of such cases, cavitation surge in industrial centrifugal pump caused by backflow vortex cavitation is presented and the importance of the phase delay of backflow vortex cavitation is clarified. First, fundamental characteristics of backflow vortex structure is shown followed by detailed discussions on the energy transfer under cavitation surge in the centrifugal pump. Then, the dynamics of backflow is discussed to explain a large phase lag observed in the experiments with the centrifugal pump.

Experimental Investigation of Blade-To-Blade Pressure Distribution in Contra-Rotating Axial Flow Pump

  • Cao, Linlin;Watanabe, Satoshi;Honda, Hironori;Yoshimura, Hiroaki;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권4호
    • /
    • pp.130-141
    • /
    • 2014
  • As a high specific speed pump, the contra-rotating axial flow pump with two rotors rotating reversely has been proved with higher hydraulic and cavitation performance, while in our previous researches, the potential interaction between two blade rows was distinctly observed for our prototype rotors designed with equal rotational speed for both front and rear rotors. Based on the theoretical and experimental evidences, a rotational speed optimization methodology was proposed and applied in the design of a new combination of contra-rotating rotors, primarily in expectation of the optimized blade pressure distributions as well as pertinently improved hydraulic performances including cavitation performance. In the present study, given one stationary and two rotating frames in the contra-rotating rotors case, a pressure measurement concept taking account of the revolutions of both front and rear rotors simultaneously was adopted. The casing wall pressure data sampled in time domain was successfully transferred into space domain, by which the ensemble averaged blade-to-blade pressure distributions at the blade tip of two contra-rotating rotors under different operation conditions were studied. It could be seen that the rotor pair with the optimized rotational speed combination as well as work division, shows more reasonable blade-to-blade pressure distribution and well weakened potential interaction. Moreover, combining the loading curves estimated by the measured casing wall pressure, the cavitation performance of the rotor pairs with new rotational speed combination were proved to be superior to those of the prototype pairs.

ON ROTATING CAVITATION

  • Tsujimote, Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1997년도 강연회 및 연구개발 발표회 논문집
    • /
    • pp.13-22
    • /
    • 1997
  • PDF

Cause of Cavitation Instabilities in Three Dimensional Inducer

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권3호
    • /
    • pp.206-214
    • /
    • 2009
  • Alternate blade cavitation, rotating cavitation and cavitation surge in rocket turbopump inducers were simulated by a three dimensional commercial CFD code. In order to clarify the cause of cavitation instabilities, the velocity disturbance caused by cavitation was obtained by subtracting the velocity vector under non-cavitating condition from that under cavitating condition. It was found that there exists a disturbance flow towards the trailing edge of the tip cavity. This flow has an axial flow component towards downstream which reduces the incidence angle to the next blade. It was found that all of the cavitation instabilities start to occur when this flow starts to interact with the leading edge of the next blade. The existence of the disturbance flow was validated by experiments.

근접하여 회전하는 두 원통 사이의 윤활유동해석 (Analysis for Lubrication between Two Close Rotating Cylinders)

  • 이승재;정호열;정재택
    • Tribology and Lubricants
    • /
    • 제17권5호
    • /
    • pp.391-398
    • /
    • 2001
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is investigated based on Stokes'approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is also determined as the distance between two cylinders varies. Special attention is directed to the case of very small distance between two cylinders concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

회전하는 원통과 병진운동하는 평판사이의 윤활유동해석 (Analysis for Lubrication between a Rotating Cylinder and a Translating Plate)

  • 정호열;정재택
    • Tribology and Lubricants
    • /
    • 제18권6호
    • /
    • pp.411-417
    • /
    • 2002
  • Two dimensional slow viscous flow between a rotating cylinder and a translating plate is investigated using Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the farce and the moment exerted on the cylinder are calculated. The flow rate through the gap between the cylinder and the plate is also determined as a function of the distance between the cylinder and the plate. Special attention is directed to the case of very small distance between the cylinder and the plate concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components

  • Kang, Dong-Hyuk;Arimoto, Yusuke;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Hah, Chunill;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권2호
    • /
    • pp.137-149
    • /
    • 2010
  • The purpose of the present research is to suppress cavitation instabilities by using a circumferential groove. The circumferential groove was designed based on CFD so that the tip leakage vortex is trapped by the groove and does not interact with the next blade. Experimental results show that the groove can suppress rotating cavitation, asymmetric cavitation and cavitation surge. However, weak instabilities with higher frequency could not be suppressed by the groove. From the analysis of pressure pattern similar to that for rotor-stator interaction, it was found that the higher frequency components are caused by the interaction of backflow vortices with the inducer blades.

J-그루브에 의한 인듀서의 캐비테이션 억제 (Suppression of Cavitation in Inducer by J-Groove)

  • 쿠로카와준이치;최영도
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.776-781
    • /
    • 2005
  • Cavitation is the most serious problem caused in developing high-speed turbopump, and use of an inducer is often made to avoid cavitation in main impeller. Thus, the inducer always operates under the worst condition of cavitation. If it could be possible to control and suppress cavitation in the inducer by some new device, it would also be possible to suppress cavitation occurring in all types of pumps. The purpose of our present study is to develop a new effective method of controlling and suppressing cavitation in an inducer using shallow grooves, named as "J-Groove", J-Groove is installed on the casing wall near the blade tip to use the pressure difference between high pressure region and low pressure region in the axial direction at the inlet of the inducer. The results show that proper combination of backward-swept inducer with J-Groove improves suction performance of turbopump remarkably in the range of partial flow rate as well as designed flow rate. The rotating backflow cavitation occurring in the range of low flow rate and the cavitation surge occurring in the vicinity of the best efficiency point can be almost fully suppressed by installing J-Groove.

  • PDF

J-그루브를 이용한 인듀서의 캐비테이션 억제에 관한 연구 (A Study on the Suppression of Cavitation in Inducer by J-Groove)

  • 최영도;쿠로카와준이치
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1239-1247
    • /
    • 2005
  • Cavitation is the most serious problem in developing high-speed turbopump, and inducer is often used to avoid cavitation in main impeller. Thus, inducer is always operating in the worst .cavitation condition. If it is possible to control and suppress cavitation in inducer by some new device, it might be possible to suppress cavitation occurring in any type of pumps. The purpose of present study is to develop a new effective method of controlling and suppressing cavitation in inducer using shallow grooves, which is named 'J-Groove'. J-Groove is installed on the casing wall near the blade tip to use the pressure difference between high pressure region and low pressure region of the inducer in an axial direction. The results show that proper combination of backward-swept inducer with J-Groove improves suction performance of turbopump remarkably in the range of partial flow rate as well as designed flow rate. The rotating backflow cavitation occurring in the range of low flow rate and the cavitation surge occurring in the vicinity of the best efficiency point can be almost suppressed by installing J-Groove.

낮은 입구압력 조건에서 캐비테이션 불안정성에 의한 액체로켓엔진의 작동 특성 (Operational Characteristic of Liquid Rocket Engine by Cavitation Instability at Low Inlet Pressure Condition)

  • 김대진;강병윤;최창호
    • 한국추진공학회지
    • /
    • 제24권6호
    • /
    • pp.93-100
    • /
    • 2020
  • 액체로켓엔진의 터보펌프는 추진제 상태 변화로 인한 캐비테이션 발생을 최소화하기 위해 인듀서를 사용한다. 그러나 인듀서에서 발생하는 캐비테이션 불안정성은 엔진 개발의 큰 문제점으로 알려져 있다. 본 논문에서는 한국형발사체 1단용 엔진이 낮은 입구압력 조건에서 작동될 때 캐비테이션 불안성에 의한 엔진 작동 특성을 검토하고 엔진의 신뢰도를 확인하고자 하였다. 산화제펌프의 캐비테이션 불안정성을 대표하는 특성주파수가 산화제펌프와 연료펌프를 비롯한 엔진 여러 곳에 부착된 동압센서, 가속도계, 스트레인 게이지 등의 신호에서 뚜렷하게 관찰되었다.