• Title/Summary/Keyword: Root-Locus Method

Search Result 72, Processing Time 0.031 seconds

PI Controller Design Method by an Extension of Root-Locus Technique (확장된 근궤적법을 이용한 PI 제어기 설계 방법)

  • Kwon, Minhee;Chang, Hyuk-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.126-132
    • /
    • 2016
  • The root-locus method is often employed when a controller is designed to find controller gain. It is usually used to determine one parameter gain while most controllers for industrial applications have more than one controller gain. For example PID controller has three controller gains, i.e. P, I, and D gains. Thus the conventional root-locus technique cannot complete the design of a controller with more than one controller gain. One way to overcome this drawback has been to apply the root-locus technique for one parameter while other parameters are assumed to be proportional to the parameter or to be constant. However this approach could lead to limited performance of the controller and if we try to adjust the proportional ratio or constants then it could be a long and tedious process of trial and error. Thus it is required to find an effective method for the root-locus technique to design controllers with more than one parameter. To this end this paper proposes an extended root-locus method for controllers with two parameters. In this paper Matlab is used as a computation tool to show the effectiveness of our method by solving examples numerically. As a result we obtained an extended root-locus illustrated in two-dimensional space for a control system with two parameters. The paper then presents how to find two controller gains based on this result of the extended root-locus. The main idea is that we can find the parameters by approaching the desired poles. It is expected that the proposed idea will help control engineers to easily design control systems using the root-locus technique, resulting in more accurate and faster control systems. Note that the extended root-locus idea can be applied to controller design problems with multiple parameters.

The 2-DOF Control system design for Quadruple-Tank process using Root Locus Technique.

  • Arjin, Numsomran;Thanit, Trisuwannawat;Kitti, Tirasesth
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1371-1374
    • /
    • 2004
  • The control system design of 2-DOF for SISO process by root locus technique is not complicated and efficiently. It can design the control system to have the transient and steady state responses, and do not adjust the gain of process controller later. However, due to control system design for MIMO process, by root locus technique, there is not exact method. This paper is presents the control system design method for Quadruple-Tank Process, by using root locus technique for the structure of 2-DOF control system. The design procedures are first decentralized then using the relative gain array, and finally 2-DOF controller design is applied.

  • PDF

An anti-swing control for 2 axis overhead cranes (2축 천정 크레인의 무진동 제어)

  • 이호훈;조성근;정연우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1428-1431
    • /
    • 1996
  • This paper proposes an anti-swing control law for a 2 degrees of freedom overhead crane. The dynamic model of a 2 degrees of freedom crane is highly nonlinear and coupled. The model is linearized and decoupled for each degree of freedom of the crane for small motions of the load about the vertical. Then a decoupled anti-swing control law is designed for each degree of freedom of the crane based on the linearized model. The control law consists of a position control loop and an swing angle control loop. The position loop,. is designed based on the loop shaping method and the swing angle loop is designed via the root locus method. Finally, the proposed anti-swing control law is implemented and evaluated on a 2 degrees of freedom prototype crane.

  • PDF

RC Snubber Analysis for Oscillation Reduction in Half-Bridge Configurations using Cascode GaN (Cascode GaN의 하프 브릿지 구성에서 오실레이션 저감을 위한 RC 스너버 분석)

  • Bongwoo, Kwak
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.553-559
    • /
    • 2022
  • In this paper, RC snubber circuit design technology for oscillation suppression in half-bridge configuration of cascode gallium nitride (GaN) field effect transistors (FETs) is analyzed. A typical wide band-gap (WBG) device, cascode GaN FET, has excellent high-speed switching characteristics. However, due to such high-speed switching characteristics, a false turn-off problem is caused, and an RC snubber circuit is essential to suppress this. In this paper, the commonly used experimental-based RC snubber design technique and the RC snubber design technique using the root locus method are compared and analyzed. In the general method, continuous circuit changes are required until the oscillation suppression performance requirement is met based on experimental experience . However, in root locus method, the initial value can be set based on the non-oscillation R-C map. To compare the performance of the two aforementioned design methods, a simulation experiment and a switching experiment using an actual double pulse circuit are performed.

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity (이선형 비선형성을 포함하는 접는 미사일 조종날개의 공탄성 해석)

  • Bae, Jae-Sung;Shin, Won-Ho;Lee, In;Shin, Young-Sug
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.29-35
    • /
    • 2002
  • Aeroelastic characteristics of a deployable missile control fin have been investigated. A deployable missile control fin is modeled by a 2-dimensional typical section. Supersonic Doublet-Point method is used for the computation of supersonic unsteady aerodynamic forces and Karpel's Minimum-State approximation is used for the aerodynamic approximation. Root-locus method and time-integration method are used for the linear and nonlinear flutter analyses. For the nonlinear flutter analysis the deployable hinge is represented by a asymmetric bilinear spring and is linearized by using the describing function method. From the flutter analyses, the effects of nonlinear parameters on the aeroelastic characteristics are investigated.

Time-Varying Sliding Mode Following Root Locus for Higher-Order Systems (고차 시스템을 위한 근궤적을 따르는 시변 슬라이딩 모드)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In this paper, we present a new time-varying sliding surface to achieve fast and robust tracking of higher-order uncertain systems. The surface passes through an initial error, and afterwards, it moves towards a predetermined target surface by means of a variable named by sliding surface gain and its intercept. Specifically, the sliding surface gain is determined so that its initial value can minimize a shifting distance of the surface and that the system roots in sliding mode can follow certain stable trajectories. The designed sliding mode control forces the system errors to stay always on the proposed surface from the beginning. By this means, the system remains insensitive to system uncertainties and disturbances for the whole time. To illustrate the effectiveness of the proposed method, the comparative study with conventional time-invariant sliding mode control is performed.

  • PDF

Gravitational Effect on Dynamic Stability of a Vertical Cantilevered Pipe Conveying Fluid (유체 이송 연직 외팔송수관의 동적안정성에 미치는 중력 효과)

  • 류봉조;류시웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.174-179
    • /
    • 2004
  • The paper deals with gravitational effect on dynamic stability of a cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratio of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.

  • PDF

Design of a Drilling Torque Controller in a Machining Center (머시닝센터에서 드릴링 토크 제어기의 설계)

  • 오영탁;권원태;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.513-518
    • /
    • 2001
  • As the machining depth increases, the drilling torque increases and fluctuates and the risk of drill failure also increases. Hence, drilling torque control is very important to prevent the drill from failure. In this study, a PID controller was designed to control the drilling torque in a machining center. The plant including the feed drive system, cutting process, and spindle system was modeled for controller design. The Ziegler-Nichols rule was used to determine the controller gain and control action times. The root locus plot was used to tune the controller gain for a certain cutting condition. Also, suggested was a simple method to obtain the tuned controller gain for an arbitrary cutting condition not using the Ziegler-Nichols rule and root locus plot. The cutting torque control, performance of the designed controller and the effect of gain tuning on the control performance were examined.

  • PDF