• Title/Summary/Keyword: Root uptake

Search Result 348, Processing Time 0.024 seconds

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

Applications of Different Types of Germanium Compounds on Rice Plant Growth and its Ge Uptake (게르마늄 종류별 토양처리시 벼의 생육특성 및 게르마늄 흡수에 미치는 영향)

  • Seo, Dong-Cheol;Cheon, Yeong-Seok;Park, Seong-Kyu;Park, Jong-Hwan;Kim, Ah-Reum;Lee, Won-Gyu;Lee, Seong-Tae;Lee, Young-Han;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.166-173
    • /
    • 2010
  • In order to obtain the basic information for agricultural utilization of germanium (Ge), the growth characteristics, Ge uptake, and grain quality of rice plant (Hopyungbyeo) were investigated under different germanium ($GeO_2$, and commercial Ge) treatments in paddy field. Phytotoxicity was detected in $GeO_2$ treatment but not in commercial Ge treatment. The grain yield was greater in the order of control treatment > commercial Ge treatment > $GeO_2$ treatment. The dry weight was greater in order of control treatment > $GeO_2$ treatment ${\geq}$ commercial Ge treatment. The Ge content of leaf in $GeO_2$ treatment was 6 times (177 mg $m^{-2}$) higher than that in commercial Ge treatment. The Ge content in rice bran was not different in $GeO_2$, and commercial Ge treatments. The Ge contents of brown rice in$GeO_2$, and commercial treatments were 40.9, and 31.1 mg $kg^{-1}$, respectively. The Ge uptake rates in rice plant was higher in the order of leaf > rice bran > brown rice > stem > root. Under $GeO_2$, 15.56% of Ge absorbed into plant with 11.1% in leaf, 1.6% in stem, 0.03% in root, 2.2% in rice bran and 0.73% in brown rice. Under commercial Ge treatment, 5.19% of Ge absorbed into plant with 1.8% in leaf, 0.46% in stem, 0,01% in root, 2.2% in rice bran, and 0.71% in brown rice. Based on these results, the Ge contents in polished rice in commercial Ge treatment were higher than those in $GeO_2$ treatment. However, the Ge contents of rice grain (containing rice bran and polished rice) in $GeO_2$ treatment were higher than those in commercial Ge treatment.

Effects of an aqueous red pine (Pinus densiflora) needle extract on growth and physiological characteristics of soybean (Glycine max)

  • Hwang, Jeong-Sook;Bae, Jeong-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.279-286
    • /
    • 2011
  • The effect of allelochemicals on growth, root nodule nitrogen fixation activity, and ion patterns of soybeans were investigated. We prepared 50 g/L (T50), 100 g/L (T100), and 200 g/L (T200) extract concentrations by soaking fresh red pine needles in a nutrient solution. Adding needles to the nutrient solution increased the content of total phenolic acids, osmolality, and total ions. The total phenolic content in the T50, T100, and T200 extracts were $206{\pm}12.61$, $335{\pm}24.16$, and $603{\pm}12.30$ mg gallic acid equivalents, respectively. The $K^+$, $Mg^{2+}$, $Ca^{2+}$, and $PO_4^{3-}$ content increased by adding needles to the nutrient solutions, whereas $SO_4^{2-}$ content decreased. The growth inhibition of soybeans was proportional to the needle extract concentrations, and the T100 and T200 concentrations resulted in remarkable growth inhibition. On day 20 after treatment, dry weight and nitrogen fixation activity of the root nodules were reduced by the T100 and T200 treatments, whereas the T50 treatment was not difference from the control. After day 10, total ion content in all treatment groups was not different in comparison with the control. However, total ionic content in all treatment groups decreased significantly compared with that in the control after day 20. The lowest total ion value was found for the T200 concentration. The T200 treatment also resulted in significantly reduced $SO_4^{2-}$ content. The amounts of $Mg^{2+}$, $Ca^{2+}$, and $Mn^{2+}$ were higher than those of the control for the T50 treatment on day 10 and for T100 on day 20 after treatment. A significant increase in osmolality was observed in the T200 treatment on day 10 and in the T100 treatment on day 20. These results suggest that under severe allelochemical stress conditions, a remarkable reduction in nodule formation, nitrogen fixation activity, and ion uptake eventually resulted in a decrease in leaf production. Furthermore, increased $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and osmolality in soybeans exposed to lower concentrations of allelochemicals than the critical stress level helped overcome the stress.

Proteome analysis of sorghum leaf and root in response to heavy metal stress

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Lee, Dong-Gi;Sarker, Kabita;Lee, Moon-Soon;Xin, Zhanguo;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.24-24
    • /
    • 2017
  • Heavy metals at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to oxidative stress in plants. The present study was performed to explore the metal tolerance mechanism in Sorghum seedling. Morpho-physiological and metal ions uptake changes were observed prominently in the seedlings when the plants were subjected to different concentrations of $CuSO_4$ and $CdCl_2$. The observed morphological changes revealed that the plants treated with Cu and Cd displayed dramatically altered shoot lengths, fresh weights, and relative water content. In addition, the concentration of Cu and Cd was markedly increased by treatment with Cu and Cd, and the amount of interacting ions taken up by the shoots and roots was significantly and directly correlated with the applied level of Cu and Cd. Using the 2-DE method, a total of 24 and 21 differentially expressed protein spots from sorghum leaves and roots respectively, 33 protein spots from sorghum leaves under Cd stress were analyzed using MALDI-TOF/TOF MS. However, the over-expression of GAPDH plays a significant role in assisting Sorghum bicolor to attenuate the adverse effects of oxidative stress caused by Cu, and the proteins involved in resistance to stress helped the sorghum plants to tolerate high levels of Cu. Significant changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. In addition, the up-regulation of glutathione S-transferase and cytochrome P450 may play a significant role in Cd-related toxicity and stress responses. The results obtained from the present study may provide insights into the tolerance mechanism of seedling leaves and roots in Sorghum under heavy metal stress.

  • PDF

Cesium Removal of the Rhizofiltration Using Sunflowers (Helianthus annuss L.) and Beans (Phaseolos vulgaris var.) (해바라기(Helianthus annuss L.)와 강낭콩(Phaseolos vulgaris var.)을 이용한 뿌리여과법(rhizofiltration)의 세슘 (cesiun) 제거)

  • Yang, Min-June;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.709-717
    • /
    • 2008
  • Rhizofiltration for cesium uptake by sunflowers (Helianthus annuus L.) and beans (Phaseolus vulgaris var.) was investigated for groundwater contamination. The cesium removal by sunflowers was greater than 98% of the total cesium in solution, and the uptake by beans was also greater than 99% within 24 hours of the rhizofiltration, showing that the rhizofiltration has a great capability to remove cesium from the contaminated water system. Experiments at various pH of solution indicated that a solution of pH $5{\sim}9$ yielded very high cesium accumulation in two plants. From the results of the analysis for cesium accumulation in plant parts, about 80% of cesium transferred into the plant from solution was accumulated in the root part and less than 20% of cesium existed in the shoot part (including leaves). Results suggest that only the roots of the fully grown plant used for rhizofiltration should be disposed or post-treated and thus the cost and time to treat massive amounts of grown plants could be dramatically reduced when sunflower and bean are used in the real field. The results of SEM and EDS analyses indicated that the most of cesium were accumulated in the root surface as a ionic phase rather than a soil precipitation phase.

Establishment of Safe Management Guideline Based on Uptake Pattern of Pesticide Residue from Soil by Radish (토양잔류 농약의 무 흡수양상 및 토양 안전관리기준 설정)

  • Hwang, Jeong-In;Kwak, Se-Yeon;Lee, Sang-Hyeob;Kang, Min-Su;Ryu, Jun-Sang;Kang, Ja-Gun;Jung, Hye-Hyeon;Hong, Sung-Hyeon;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.278-285
    • /
    • 2016
  • BACKGROUND: Uptake patterns of ${\alpha}$-, ${\beta}$-isomers and sulfate metabolite of endosulfan (ED) by radishes grown in treated soils with ED concentrations of 2 and 10 mg/kg were investigated to establish soil management guidelines for ensuring the safety of radishes from ED residues. METHODS AND RESULTS: All samples of soils and radish plants separated into shoot and root parts were analyzed for ED residues using a gas-chromatography mass spectrophotometer, and the results were used to calculate the bioconcentration factor (BCF), indicating the ratio of ED concentrations between radishes and soils. During the experimental period, uptake and distribution rates of ED-sulfate in radishes were the highest, followed by ${\alpha}$- and ${\beta}$-ED. The BCF values to initial ED concentrations in soils were greater for root parts (0.0077 to 0.2345) than for shoot parts (0.0002 to 0.0429) and used to obtain regression equations by time. Long-term BCFs estimated by the obtained equations ($R^2$ of 0.86 to 1.00) were evaluated with the maximum residue limit (0.1 mg/kg) of ED for radishes, in order to suggest safe management guidelines of ED for radish-cultivating soils. CONCLUSION: Suggested guidelines showed the significant dependency on duration for radish cultivation and exposed concentration of ED in soil.

Carbon Storage and Uptake by Deciduous Tree Species for Urban Landscape (도시 낙엽성 조경수종의 탄소저장 및 흡수)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.160-168
    • /
    • 2012
  • This study generated regression models to estimate the carbon storage and uptake from the urban deciduous landscape trees through a direct harvesting method, and established essential information to quantify carbon reduction from urban greenspace. Tree species for the study included Acer palmatum, Zelkova serrata, Prunus yedoensis, and Ginkgo biloba, which are usually planted as urban landscape trees. Tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the 4 species by using diameter at breast height(dbh) as an independent variable. All the regression models showed high fitness with $r^2$ values of 0.94~0.99. Carbon storage and uptake per tree and their differences between diameter classes increased as the diameter sizes got larger. The carbon storage and uptake tended to be greatest with Zelkova serrata in the same diameter sizes, followed by Prunus yedoensis and Ginkgo biloba in order. A Zelkova serrata tree with 15cm in dbh stored about 54kg of carbon and annually sequestered 7 kg, based on a regression model for the species. The study has broken new grounds to overcome limitations of the past studies which substituted, due to a difficulty in direct cutting and root digging of urban landscape trees, coefficients from the forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates. Study results can be useful as a tool or skill to evaluate carbon reduction by landscape trees in urban greenspace projects of the government.

Development of K-bioassay for the Efficient Potassium Fertilization of Citrus Tree ($K(^{86}Rb)-bioassay$를 이용한 감귤나무의 가리영양진단법 개발)

  • U, Zang-Kual;Han, Hae-Ryong;Moon, Duk-Young;Kim, Chang-Myung;Lim, Han-Cheol;Moon, Do-Kyung;Song, Sung-Jun
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.182-188
    • /
    • 1994
  • Similar to the $^{42}K$ uptake, $^{86}Rb$ uptake by the roots of Hordeum distichum grown in the hydroponic culture was negatively correlated with the concentration of K supplied previously, showing that $^{86}Rb$ can be used for the K-bioassay. $^{86}Rb$ having longer half life (18.86 day) than $^{42}K$ (12.36 hr) allowed the use of larger number of root samples. $^{86}Rb$ uptake of 3 years old Citrus unshiu Marc. grown in water culture decreased drastically with the increase of K concentration of the culture solution, thus demonstrating that the nutrition status of K for citrus trees can be diagnosed by K-bioassay using $^{86}Rb$ tracer. $^{86}Rb$ uptake by the excised roots of Hordeum distichum grown in the pot with different K fertilizations was well correlated with the exchangeable K in soil. The amount of exchangeable K in soil for the optimal plant growth can be determined by its relationship. $^{42}K$ and $^{86}Rb-uptake$ by the Hordeum distichum roots were markedly inhibited by $5{\times}10^{-3}\; M$ KCN in the bioassay solution, indicating that uptake is energy-dependent. There was no significant relationship between K content in citrus leaves and K concentration in the water-culture medium. It is concluded that K-bioassay is a potentially useful tool for determining of K requirement in citrus trees.

  • PDF

Arbuscular-Mycorrhizae Formation and Nutrient Status of Citrus Plants in Cheju (제주 감귤원에서 Arbuscular-Mycorrhizae 형성과 감귤 잎 중의 무기양분 조성)

  • Chung, Jong-Bae;Moon, Doo-Khil;Han, Hae-Ryong;Lim, Han-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.181-186
    • /
    • 1997
  • Since volcanic ash soils in Cheju island have high capacities of adsorption and immobilization of phosphate, a relatively high rate of P application has been recommended in citrus orchards for many years and such a large amount of P application could be problematic both in agricultural and environmental point of view. The objective of this study was to test whether arbuscular-mycorrhizae can be used to improve P availability in Cheju citrus orchard soils. Soil, root and leaf samples were taken from 14 citrus orchards of different location and soil texture. Mycorrhizal spore distribution in the soils, mycorrhizal infection ratio on the citrus roots, and mineral nutrients in leaf samples were determined. Numbers of mycorrhizal spore were in the range of $9,000{\sim}40,000/100g$ soil. The population level was not correlated with any of the soil characteristics examined. Mycorrhizae were found in all of the examined orchards and root infection ratio varied between $14{\sim}60%$. The mycorrhizae infection ratio differed substantially in different soils. Although root infection was high at soils with low extractable P level, it was not significantly correlated with other soil factors measured. Since a positive correlation was observed between leaf P concentration and root infection, enhancement of P uptake seemed to be associated with mycorrhizal infection. These results indicate that mycorrhizae could be a useful method to reduce P applications in Cheju citrus orchards.

  • PDF

The Growth Effects of Creeping Bentgrass by Application of Liquid Fertilizer with Saponin and Liquid Fertilizer with Amino Acid (사포닌과 아미노산 함유비료의 살포가 크리핑벤트그래스의 생육에 미치는 효과)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lee, Jae-Pil;Hwang, Young-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.54-59
    • /
    • 2012
  • This study was conducted to evaluate to the effect of liquid fertilizer with saponin (SLF) and liquid fertilizer with amino acid (ALF)on the growth of creeping bentgrass. In creeping bentgrass, turf color index, chlorophyll index, dry weight and shoot number were measured. It was hardly affected by SLF and ALF applications in investigation of chemical properties of the soil. By applying SLF and ALF, turf color index and chlorophyll index in 2SLF and 2ALF were increased more than CF, and shoot number and root length in 2SLF, ALF and 2ALF were higher than CF. In correlation coefficient among growth factors of creeping bentgrass, turf quality was significantly different in root length, shoot number, dry weight, and content of N and K in turf tissue (P<0.05), N content of tissue was significantly in root length, shoot number and dry weight (P<0.05), and K content was significantly in shoot number and dry weight (P<0.05). These results suggested that application of functional liquid fertilizers such as SLF and ALF was expected to replace compound fertilizer in turf management and that applied SLF and ALF was stimulated the uptake of N and K into turf so that turf qualities were improved by enhancing growth shoot and root of turf.