• Title/Summary/Keyword: Room temperatures

Search Result 1,012, Processing Time 0.026 seconds

Post-heating behavior of concrete beams reinforced with fiber reinforced polymer bars

  • Irshidat, Mohammad R.;Haddad, Rami H.;Almahmoud, Hanadi
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1253-1269
    • /
    • 2015
  • The present paper investigates the post heating behavior of concrete beams reinforced with fiber reinforced polymer (FRP) bars, namely carbon fiber reinforced polymer (CFRP) bars and glass fiber reinforced polymer (GFRP) bars. Thirty rectangular concrete beams were prepared and cured for 28 days. Then, beams were either subjected (in duplicates) to elevated temperatures in the range (100 to $500^{\circ}C$) or left at room temperature before tested under four point loading for flexural response. Experimental results showed that beams, reinforced with CFRP and GFRP bars and subjected to temperatures below $300^{\circ}C$, showed better mechanical performance than that of corresponding ones with conventional reinforcing steel bars. The results also revealed that ultimate load capacity and stiffness pertaining to beams with FRP reinforcement decreased, yet their ultimate deflection and toughness increased with higher temperatures. All beams reinforced with FRP materials, except those post-heated to $500^{\circ}C$, failed by concrete crushing followed by tension failure of FRP bars.

Determination of Low-temperature Electrochemical Properties of Selected Cation-exchange Membranes for Cathodic Protection Analysis

  • Ko, Moon-Young;Kwon, Byeong-Min;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.8-12
    • /
    • 2008
  • The electrochemical properties of Nafion type membranes as a function of temperature to examine the key factors affecting the cathodic protection process at low temperatures was investigated in this study. Variable temperature experiments for AC impedance, DC resistance were conducted. The resistances of 3 Nafion membranes (N 324, N 450, N MAC) were measured in 30% KOH (aq) for a range of temperatures between $-30^{\circ}C$ and room temperature. Membrane resistance increases exponentially with decreasing temperature. This behaviour is most significant at operational temperatures below $0^{\circ}C$. These membranes are stable under the low temperature and caustic conditions of the heat exchange system, but they place a much higher restriction on the cathodic protection of the stainless heat exchange stack. N 450 has the lowest AC impedence and DC resistance at temperatures below $0^{\circ}C$ and consequently is most suitable membrane of the three, for low temperature applications.

A Study on the Yearly Thermal Environmental Characteristics in Underground Space (지하거주공간의 연간 열환경에 관한 연구)

  • Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.27-33
    • /
    • 1998
  • The room temperature and air conditioning load in the underground space have been investigated numerically by the unsteady heat conduction equation. The model room has 3 m in height and 10 m in width, and it's position in the underground depth are 0.5 m to 5 m. When the room was located around surface, the room temperatures were strongly influenced by the atmosphere. But the underground depth is more than 2 m, the yearly temperature amplitude was small and the temperature phase was delayed. Up to 5 m of the depth, the cooling and heating load was decreased rapidly, but over 10 m of the depth, the air conditioning load was constant.

  • PDF

Analysis of Temperature Distributions in Spray Coating Room (스프레이 코팅 룸의 온도분포 해석)

  • Kim, Nam Woong;Kim, Sung-Yong;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7667-7671
    • /
    • 2015
  • Recently, Zinc coating is often used with environment friendly features and high performance. Generally The coating temperature is one of main factors for determining coating thickness and coating ability, so the optimal coating temperature is strongly required. In this paper, the thermo-flow simulation considering the air flow inside the coating rooms for analyzing the temperature distributions of Zinc spray coating room was performed. Two spray coating rooms, preheating room and drying room were all modeled by SolidWorks program and the temperature distributions were analyzed by Flow simulation program. The analysis results were verified with the measured data by thermal image camera. The characteristics of temperature distributions of the first spray room and the second spray room were understood and the results showed that the temperatures of two spray coating room were low compared with the target temperature $25^{\circ}C$. To the exclusion of heater addition, the simulation with all the same conditions exclusive the exhaust fan was performed, which showed that the temperatures of the first and the second spray rooms increased by $6.2^{\circ}C$ and $5.8^{\circ}C$. This analysis can be applicable for designing a new spray coating room for improving performance.

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou;Zongping, Chen;Maogen, Ban;Yunsheng, Pang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.575-590
    • /
    • 2022
  • In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

Application of the Infusion Method to the Repair of Damage in Wind Turbine Blades (진공성형 공법을 이용한 풍력발전기 블레이드의 수리)

  • Lee, Kwangju;Jang, Han Seul;Seon, Seokwoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4756-4762
    • /
    • 2014
  • Damaged wind turbine blades are repaired conventionally using a hand lay-up method with epoxy, where the bonding strength is not high. Epoxy has poor curing characteristics at low temperatures. The infusion method with polyester was proposed. Infusion method is believed to distribute resin uniformly. Polyester is used because it hardens better than epoxy at low temperatures. At room temperature, the proposed method increased the bonding strength by 77.7% compared to the conventional method. Using the proposed method at 15 and $5^{\circ}C$, the bonding strength increased compared to the conventional method. This paper proposes a new method for repairing wind turbine blades, even at temperatures where the conventional method cannot be used because epoxy resin does not harden. The bonding strength of the proposed method at low temperatures is higher than that of the conventional method at room temperature.

Changes in Electroencephalographic Results and Heart Rate Variability after Exposure to Green Landscape Photographs Correlated with Color Temperature and Illumination Level

  • Lee, Min Jung;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.639-649
    • /
    • 2021
  • Background and objective: Various images from visual display terminals (VDTs) as well as living lighting are important parts of our daily life; thus, properly controlling the lighting environment - that is, illuminance, color temperature and good images from VDTs - can have a substantial effect on improving the mental health and work efficiency in everyday life. We examined electroencephalography (EEG) and heart rate variability (HRV) responses to various lighting conditions in 25 university students as they viewed images of a green landscape or traffic congestion. Methods: EEG was performed in darkness and when the room was illuminated with 10 different light-emitting diode (LED) color temperatures, while the EEG and HRV responses to green landscape or traffic congestion image stimuli were measured in darkness and during room illumination with three different LED color temperatures. Results: We found a significant difference between darkness and high LED illumination (400 lx) at 7 (CZ, F4, FZ, O1, O2, OZ, and T6) of 30 channels, while the alpha wave activity increased during darkness. In the second experiment, the green landscape image stimuli in the 30 lx-2600 K lighting condition elicited theta wave activity on the EEG, whereas the traffic congestion image stimuli under high LED illumination elicited high beta and gamma wave activities. Moreover, the subjects exhibited better stress coping ability and heart rate stability in response to green landscape image stimuli under illuminated conditions, according to their HRV. Conclusion: These results suggest that lower color temperatures and illumination levels alleviate tension, and that viewing green landscape image stimuli at low illumination, or in darkness, is effective for reducing stress. Conversely, high illumination levels and color temperatures are likely to increase tension and stress in response to traffic congestion image stimuli.

Mechanical Properties of 0.25-0.65wt% CaO added AM60B Eco-Mg Diecastings at room and Elevated Temperatures (0.25-0.65wt% CaO 첨가 AM60B Eco-Mg 다이캐스팅 부품의 상온 및 고온 기계적 특성)

  • Seo, Jung-Ho;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • The effect of CaO addition to AM60B Mg alloy on tensile properties has been investigated, with focus on strength and ductility at room and elevated temperatures. The 0.25-0.65wt% CaO added AM60B Eco-Mg diecastings were prepared by high pressure die casting using Buhler 1,450-ton cold chamber machine without $SF_6$ and $SO_2$ gases. The microstructures and tensile properties of each alloy were tested. The results show that the grains of AM60B are refined and the mechanical properties increase with CaO addition at room temperature. The improvement of strength and ductility is prominent at 0.45-0.55wt% CaO addition. Also, improved mechanical properties are maintained at elevated temperature of $150^{\circ}C$. CaO addition results in $Al_2Ca$ phase formation mostly on the grain boundaries. This phase leads to the refinement of grain structures and improvement of ductility as well as strength. The suppression of ${\beta}-Mg_{17}Al_{12}$ phase as well as the decrease of fracture surface porosity and other casting defects caused by melt cleanliness also contribute to the enhancement of mechanical properties of AM60B Eco-Mg at room and elevated temperature.

Exposure to elevated temperatures and cooled under different regimes-a study on polypropylene concrete

  • Yaragal, Subhash C.;Ramanjaneyulu, S.
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.21-34
    • /
    • 2016
  • Fire is one of the most destructive powers to which a building structure can be subjected, often exposing concrete elements to elevated temperatures. The relative properties of concrete after such an exposure are of significant importance in terms of the serviceability of buildings. Unraveling the heating history of concrete and different cooling regimes is important for forensic research or to determine whether a fire-exposed concrete structure and its components are still structurally sound or not. Assessment of fire-damaged concrete structures usually starts with visual observation of colour change, cracking and spalling. Thus, it is important to know the effect of elevated temperatures on strength retention properties of concrete. This study reports the effect of elevated temperature on the mechanical properties of the concrete specimen with polypropylene fibres and cooled differently under various regimes. In the heating cycle, the specimen were subjected to elevated temperatures ranging from $200^{\circ}C$ to $800^{\circ}C$, in steps of $200^{\circ}C$ with a retention period of 1 hour. Then they were cooled to room temperature differently. The cooling regimes studied include, furnace cooling, air cooling and sudden cooling. After exposure to elevated temperatures and cooled differently, the weight loss, residual compressive and split tensile strengths retention characteristics were studied. Test results indicated that weight and both compressive and tensile strengths significantly reduce, with an increase in temperature and are strongly dependent on cooling regimes adopted.

Effect of Heat Therapy to Superficial and Deep Body Temperatures according to Applying Dry and Moist Heats on Shoulder and Thigh (어깨와 대퇴부위에 건열과 습열 적용이 피부온도와 심부체온에 미치는 영향)

  • Lim, Nan-Young;Jeong, Hyeon-Cheol;Lee, Seung-Won;Kim, Woo-Jin
    • Journal of Korean Biological Nursing Science
    • /
    • v.13 no.3
    • /
    • pp.269-275
    • /
    • 2011
  • Purpose: This study was designed to help preparing the evidence-based data for the manual of heat applications by finding the differences of superficial and core temperatures after applying dry and moist heats on shoulder and thigh. Methods: Moist and dry heats were alternately applied on the 33 subjects a day apart from May 15, 2010 through June 9, 2010. The experiment was conducted with $23^{\circ}C$ to $25^{\circ}C$ room temperature and 50% to 66% of moisture from 2 to 6 p.m. After heat was applied on the shoulder of the subjects wearing shorts and gowns for 30 minutes, their superficial and core temperatures were measured. The same method was used on the thigh after two hours. Results: Both superficial and core temperatures on the shoulder and thigh increased significantly after heat therapy. There was no significant difference between the temperatures before and after intervention according to applying methods and regions. Conclusion: This study provides a theoretical basis that a dry heat is a convenient nursing intervention for hypothermic patients.