DOI QR코드

DOI QR Code

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou (College of Civil Engineering and Architecture, Guangxi University) ;
  • Zongping, Chen (College of Civil Engineering and Architecture, Guangxi University) ;
  • Maogen, Ban (College of Civil Engineering and Architecture, Guangxi University) ;
  • Yunsheng, Pang (College of Civil Engineering and Architecture, Guangxi University)
  • Received : 2022.09.03
  • Accepted : 2022.10.28
  • Published : 2022.12.10

Abstract

In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Nos. 51578163 and 52220105005), Bagui Scholars Special Funding Project ((2019) No.79), Guangxi Science and Techonology Base and Talent Special Project (AD21075031), Projects Funded by the Central Government to Guide Local Scientific and Technological Development (ZY21195010), Guangxi Key R & D Plan (AB21220012), Major Projects of Nanning Scientific Research and Technological Development Plan (20223024) and Innovation Project of Guangxi Graduate Education (YCBZ2021020).

References

  1. Abdul-Rahman, M., Al-Attar, A.A., Hamada, H.M. and Tayeh, B. (2020), "Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature", J. Build. Eng., 29, 101167. https://doi.org/10.1016/j.jobe.2019.101167.
  2. AIJ (1997), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structure, Architectural Institute of Japan; Tokyo, Japan.
  3. Akeed, M.H., Qaidi, S., Faraj, R.H., Majeed, S.S., Mohammed, A.S., Emad, W. and Azevedo, A.R. (2022a), "Ultra-high-performance fiber-reinforced concrete. Part V: Mixture design, preparation, mixing, casting, and curing", Case Stud. Constr. Mat., 17, e01363. https://doi.org/10.1016/j.cscm.2022.e01363.
  4. Akeed, M.H., Qaidi, S., Faraj, R.H., Mohammed, A.S., Emad, W., Tayeh, B.A. and Azevedo, A.R. (2022b), "Ultra-high-performance fiber-reinforced concrete. Part I: Developments, principles, raw materials", Case Stud. Constr. Mat., 17, e01290. https://doi.org/10.1016/j.cscm.2022.e01290.
  5. Al Saffar, D.M., Tawfik, T.A. and Tayeh, B.A. (2022), "Stability of glassy concrete under elevated temperatures", Eur. J. Environ. Civil Eng., 26(8), 3157-3168. https://doi.org/10.1080/19648189.2020.1783368.
  6. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021b), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A-Solid., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  7. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  8. Al-Furjan, M.S.H., Shan, L., Shen, X., Kolahchi, R. and Rajak, D.K. (2022a), "Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories", Thin Wall. Struct., 178, 109495. https://doi.org/10.1016/j.tws.2022.109495.
  9. Al-Furjan, M.S.H., Yin, C., Shen, X., Kolahchi, R., Zarei, M.S. and Hajmohammad, M.H. (2022b), "Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate", Mech. Syst. Signal Pr., 178, 109269. https://doi.org/10.1016/j.ymssp.2022.109269.
  10. Aly, T., Elchalakani, M., Thayalan, P. and Patnaikuni, I. (2010), "Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns", J. Constr. Steel Res., 66(1), 11-18. https://doi.org/10.1016/j.jcsr.2009.08.002.
  11. Alyaa, A.A.A., Mazin, B.A., Hussein, M.H. and Bassam, A.T. (2020), "Investigating the behaviour of hybrid fibre-reinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Technol., 9(2). https://doi.org/10.1016/j.jmrt.2019.12.029.
  12. Amin, M. and Tayeh, B.A. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459.
  13. Amin, M., Hakeem, I.Y., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022), "Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperature", Case Stud. Constr. Mater., 16, e01063. https://doi.org/10.1016/j.cscm.2022.e01063.
  14. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181.
  15. Bahrami, A. and Nematzadeh, M. (2021), "Bond behavior of lightweight concrete-filled steel tubes containing rock wool waste after exposure to high temperatures", Constr. Build. Mater., 300, 124039. https://doi.org/10.1016/j.conbuildmat.2021.124039.
  16. BS 540025 (2005), Steel Concrete and Composite Bridges: Part 5: Code of Practice for the Design of Composite Bridges, British Standard Institute, London, British.
  17. CEN, EN 1992-1-2 Eurocode 2 (2005), Part 1-2: Design of Concrete Structures-General Rules-Structural Fire Design, Belgique, Bruxelles.
  18. Chen, Z., Jia, H. and Li, S. (2022), "Bond behavior of recycled aggregate concrete-filled steel tube after elevated temperatures", Constr. Build. Mater., 325, 126683. https://doi.org/10.1016/j.conbuildmat.2022.126683.
  19. Chen, Z., Zhou, J. and Wang, X. (2020a), "Study on bond behavior of steel reinforced high strength concrete after high temperatures", Adv. Concrete Constr., 10(2), 113-125. https://doi.org/10.12989/acc.2020.10.2.113.
  20. Chen, Z., Zhou, J., Jing, C. and Tan, Q. (2021), "Mechanical behavior of spiral stirrup reinforced concrete filled square steel tubular columns under compression", Eng. Struct., 226, 111377. https://doi.org/10.1016/j.engstruct.2020.111377.
  21. Chen, Z., Zhou, J., Liang, Y. and Ye, P. (2020b), "Residual behavior of recycled aggregate concrete beam and column after elevated temperatures", Struct. Eng. Mech., 76(4), 513-528. https://doi.org/10.12989/sem.2020.76.4.513.
  22. Chen, Z.P., Liu, X. and Zhou, W.X. (2018), "Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures", Steel Compos. Struct., 27(4), 509-523. https://doi.org/10.12989/scs.2018.27.4.509.
  23. DBJ 13-61-2004 (2004), Technical Specification for Steel-Concrete Mixed Structure, Fujian Academy of Building Science, Fujian, China.
  24. Dong, H., Chen, X., Cao, W. and Zhao, Y. (2020), "Bond-slip behavior of large high-strength concrete-filled circular steel tubes with different constructions", J. Constr. Steel Res., 167, 105951. https://doi.org/10.1016/j.jcsr.2020.105951.
  25. Ekmekyapar, T. and AL-Eliwi, B.J.M. (2017), "Concrete filled double circular steel tube (CFDCST) stub columns", Eng. Struct., 135, 68-80. https://doi.org/10.1016/j.engstruct.2016.12.061.
  26. Eurocode 4 (2004), Design of Composite Steel and Concrete Structures-Part1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
  27. Haido, J.H., Tayeh, B.A., Majeed, S.S. and Karpuzcu, M. (2021), "Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material", Constr. Build. Mater., 268, 121725. https://doi.org/10.1016/j.conbuildmat.2020.121725.
  28. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018b), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026.
  29. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean. Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  30. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018a), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  31. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  32. Han, L.H. and Yang, Y.F. (2007), Modern Technology of Concrete-filled Steel Tubular Structure, China Architecture & Building Press, Beijing, China.
  33. Han, L.H., Tao, Z. and Wang, W.D. (2009), Advanced Composite and Mi ed Structures-Testing, Theory, and Design Approach, Science Press, Beijing, China.
  34. Karimi, A. and Nematzadeh, M. (2020), "Axial compressive performance of steel tube columns filled with steel fiber-reinforced high strength concrete containing tire aggregate after exposure to high temperatures", Eng. Struct., 219, 1-18. https://doi.org/10.1016/j.engstruct.2020.110608.
  35. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020a), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech.-A/Solid., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  36. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020b), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  37. Kilpatrick, A.E. and Rangan, B.V. (1999), "Influence of interfacial shear transfer on behavior of concrete-filled steel tubular columns", ACI Struct. J., 96(4), 642-648. https://doi.org/10.1016/S0022-1694(99)00076-1.
  38. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  39. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24(1), 643-662. https://doi.org/10.1177/10996362211020388.
  40. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  41. Lyu, W.Q. and Han, L.H. (2019), "Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes", J. Constr. Steel Res., 155, 438-459. https://doi.org/10.1016/j.jcsr.2018.12.028.
  42. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., 42(8), 4073-4081. https://doi.org/10.1002/pc.26118.
  43. Nezamian, A., Al-Mahaidi, R. and Grundy, P. (2006), "Bond strength of concrete plugs embedded in tubular steel piles under cyclic loading", Can. J. Civil Eng., 33(2), 111-125. https://doi.org/10.1139/l05-091.
  44. Qaidi, S.M., Atrushi, D.S., Mohammed, A.S., Ahmed, H.U., Faraj, R.H., Emad, W. and Najm, H.M. (2022), "Ultra-high-performance geopolymer concrete: A review", Constr. Build. Mater., 346, 128495. https://doi.org/10.1016/j.conbuildmat.2022.128495.
  45. Qiao, Q.Y., Zhang, W.W., Mou, B. and Cao, W.L. (2019), "Seismic behavior of exposed concrete filled steel tube column bases with embedded reinforcing bars: Experimental investigation", Thin Wall. Struct., 136, 367-381. https://doi.org/10.1016/j.tws.2018.12.039.
  46. Qu, X., Chen, Z., Nethercot, D.A., Gardner, L. and Theofanous, M. (2013), "Load-reversed push-out tests on rectangular CFST columns", J. Constr. Steel Res., 81, 35-43. https://doi.org/10.1016/j.jcsr.2012.11.003.
  47. Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999) 125:5(477).
  48. Schaumann, P., Kodur, V. and Bahr, O. (2009), "Fire behavior of hollow structural section steel columns filled with high strength concrete", J. Constr. Steel Constr., 65(8-9), 1794-1802. https://doi.org/ 10.1016/j.jcsr.2009.04.013.
  49. Shakir-Khalil, H. (1993), "Resistance of concrete-filled steel tubes to pushout forces", Struct. Eng., 71(13), 234-243.
  50. Song, T.Y., Tao, Z., Han, L.H. and Uy, B. (2017), "Bond behavior of concrete-filled steel tubes at elevated temperatures", J. Struct. Eng., 143(11), 04017147. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001890.
  51. Tao, Z., Han, L.H., Uy, B. and Chen, X. (2011), "Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns", J. Constr. Steel Res., 67(3), 484-496. https://doi.org/10.1016/j.jcsr.2010.09.006.
  52. Tao, Z., Song, T.Y., Brain, U. and Han, L.H. (2016), "Bond behavior in concrete-filled steel tubes", J. Constr. Steel Res., 120, 81-93. https://doi.org/10.1016/j.jcsr.2015.12.030.
  53. Tayeh, B.A., Akeed, M.H., Qaidi, S. and Bakar, B.A. (2022a), "Influence of microsilica and polypropylene fibers on the fresh and mechanical properties of ultra-high performance geopolymer concrete (UHP-GPC)", Case Stud. Constr. Mater., 17, e01367. https://doi.org/10.1016/j.cscm.2022.e01367.
  54. Tayeh, B.A., Hakamy, A., Amin, M., Zeyad, A.M. and Agwa, I.S. (2022b), "Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature", Case Stud. Constr. Mater., 16, e00951. https://doi.org/10.1016/j.cscm.2022.e00951.
  55. Tayeh, B.A., Zeyad, A.M., Agwa, I.S. and Amin, M. (2021), "Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete", Case Stud. Constr. Mater., 15, e00673. https://doi.org/10.1016/j.cscm.2021.e00673.
  56. Tobbala, D.E., Rashed, A.S., Tayeh, B.A. and Ahmed, T.I. (2022), "Performance and microstructure analysis of high-strength concrete incorporated with nanoparticles subjected to high temperatures and actual fires", Arch. Civil Mech. Eng., 22(2), 1-15. https://doi.org/10.1007/s43452-022-00397-6.
  57. Virdi, K.S. and Dowling, P.J. (1980), "Bond strength in concrete filled steel tubes", IABSE Proceedings P-33/80, London, British.
  58. Xu, J.J., Chen, Z.P., Xue, J.Y. and Su, Y. (2013), "Failure mechanism of interface bond behavior between circular steel tube and recycled aggregate concrete by push-out test", J. Build. Eng., 34(7), 148-156. (In
  59. Yuan, G.L. and Guo, C. (2006), "Experimental study on bond property of reinforced concrete at high temperatures", Indus. Constr., 36(2), 57-66. (in Chinese) https://doi.org/10.3321/j.issn:1000-8993.2006.02.017.
  60. Zheng, S., Li, L., Deng, G. Zeng, L. and Che, S. (2009), "Experimental study on bond-slip behavior between shaped steel and HSHP concrete in steel reinforced HSHP concrete beams", J. Eng. Mech., 26(1), 104-112. (in Chinese)