• Title/Summary/Keyword: Room temperature oxidation

Search Result 297, Processing Time 0.026 seconds

Acid Treatments of Carbon Nanotubes and Their Application as Pt-Ru/CNT Anode Catalysts for Proton Exchange Membrane Fuel Cell

  • Kim, Min-Sik;Lim, Sin-Muk;Song, Min-Young;Cho, Hyun-Jin;Choi, Yun-Ho;Yu, Jong-Sung
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.336-342
    • /
    • 2010
  • Different oxidation treatments on CNTs using diluted 4.0 M $H_2SO_4$ solution at room temperature and or at $90^{\circ}C$ reflux conditions were investigated to elucidate the physical and chemical changes occurring on the treated CNTs, which might have significant effects on their performance as catalyst supports in PEM fuel cells. Raman spectroscopy, X-ray diffraction and transmission electron microscope analyses were made for the acid treated CNTs to determine the particle size and distribution of the CNT-supported Pt-Ru nanoparticles. These CNT-supported Pt-based nanoparticles were then employed as anode catalysts in PEMFC to investigate their catalytic activity and single-cell performance towards $H_2$ oxidation. Based on PEMFC performance results, refluxed Pt-Ru/CNT catalysts prepared using CNTs treated at $90^{\circ}C$ for 0.5 h as anode have shown better catalytic activity and PEMFC polarization performance than those of the commercially available Pt-Ru/C catalyst from ETEK and other Pt-Ru/CNT catalysts developed using raw CNT, thus demonstrating the importance of acid treatment in improving and optimizing the surface properties of catalyst support.

Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel (스테인리스 스틸의 표면 산화피막 성장과 내부식성 상관관계)

  • Park, Youngju;Yu, Jinseok;Sim, Seong Gu;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.152-157
    • /
    • 2021
  • Stainless steel is a metal that does not generate rust. Due to its excellent workability, economic feasibility, and corrosion resistance, it is used in various industrial fields such as ships, piping, nuclear power, and machinery. However, stainless steel is vulnerable to corrosion in harsh environments. To solve this problem, its corrosion resistance could be improved by electrochemically forming an anodized film on its surface. In this study, 316L stainless steel was anodized at room temperature with ethylene glycol-based 0.1 M NH4F and 0.1M H2O electrolyte to adjust the thickness of the oxide film using different anodic oxidation voltages (30 V, 50 V, and 70 V) with time control. The anodic oxidation experiment was performed by increasing the time from 1 hour to 7 hours at 2-hour intervals. Corrosion resistance according to the thickness of the anodic oxide film was observed. Electrochemical corrosion behavior of oxide films was investigated through polarization experiments.

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

Effects of Storage Conditions on Rancidity of Perilla and Sesame Seed Oils (저장조건(貯藏條件)이 들깨유(油) 및 참깨유(油)의 산패도(酸敗度)에 미치는 영향(影響))

  • Kim, Hye-Kyung;Lee, Yang-Cha;Lee, Ki-Yull
    • Journal of Nutrition and Health
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 1979
  • It is a general trend everywhere that the uses of vegetable oils are increasing due to the fact that they are effective in curing and preventing symptoms of high blood pressure and various heart failure conditions. At the same time the concept that oxidative rancidity is caused by the oxidation of unsaturated fatty acid moieties whose subsequent decomposition gives rise to various undesirable, sometimes toxic compounds is now well accepted. Linolenic acid (C, 18:3) is one of highly unsaturated and readily oxidizable fatty acid. The content of this essential polyunsaturated fatty acid in perilla seed oil (PSO) was found to be as high as 48% while only 1.5% in sesame seed oil (SSO). In this experiment the oxidative stability of PSO was compared with that of SSO. The experimental test group were as follows: A) Stored at different temperatures, namely $4^{\circ}C,\;30^{\circ}C,$ and $60^{\circ}C,$ B) Stored at room temperature $(20{\pm}5^{\circ}C)$ ; a. protected from sunlight and air, b. exposed to air without sunlight c. exposed to sunlight but protected front air, d. completely exposed to both air and sunlight. The following results were obtained; 1) It was found to be most stable against oxidation to store both PSO and SSO under the low temperature $(4^{\circ}C)$ condition. According to P.V. measurements it was found to be safe to keep both oils up to $30^{\circ}C$ for at least 8 weeks. When exposed to air, sunlight and high temperature $(60^{\circ}C)$, P.V. of PSO reached there peak values, which were much higher than those of SSO. This explains much of its instability as compared to SSO against oxidation. 2) The effect of high temperature $(60^{\circ}C)$ on A.V. was found to be more striking than those of all the other storage conditions. The condition of refrigeration was most effective in keeping A.V. low for both oils as was the case in P.V. 3) For both oils, I.V. decreased throughout the experimental period (8 weeks). The range of decrement was larger for PSO than SSO. 4) There was no significant change in the compositions of fatty acids of SSO caused by various experimental storage conditions. But for PSO the compositions of stearic, oleic and linoleic acid were decreased, whereas linolenic acid was increased proportionally.

  • PDF

Nanoscale NiO for transparent solid state devices

  • Patel, Malkeshkumar;Kim, Joondong;Park, Hyeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.243.2-243.2
    • /
    • 2015
  • We report a high-performing nanoscale NiO thin film grown by thermal oxidation of sputtered Ni film. The structural, physical, optical and electrical properties of nanoscale NiO were comprehensively investigated. A quality transparent heterojunction (NiO/ZnO) was formed by large-area applicable sputtering deposition method that has an extremely low saturation current of 0.1 nA. Considerable large rectification ratio of more than 1000 was obtained for transparent heterojunction device. Mott-Schottky analyses were applied to develop the interface of NiO and ZnO by establishing energy diagrams. Nanoscale NiO has the accepter carrier concentration of the order of 1018 cm-3. Nanoscale NiO Schottky junction device properties were comprehensively studied using room temperature impedance spectroscopy.

  • PDF

ZnO Octahedron Fabricated by Thermal Evaporation Technique in Air (공기 중에서 열증발법에 의하여 제작된 정팔면체 ZnO 결정)

  • Lee, Geun-Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.294-297
    • /
    • 2013
  • ZnO crystals with octahedral shape were synthesized by thermal evaporation technique. $ZnF_2$ powder was used as the source material. The thermal evaporation and oxidation of $ZnF_2$ powder was carried out for 1 hr at $1,000^{\circ}C$ in air under atmospheric pressure. SEM images showed that the ZnO crystals produced by oxidizing $ZnF_2$ vapor possessed a characteristic octahedral shape. XRD spectrum revealed that the ZnO octahedron had hexagonal wurtzite structure. In the room temperature photoluminescence spectrum, a strong green emission peak at around 510 nm was observed.

Coating technique for use with remote measurement system at elevated temperatures (고온에서 원거리 측정 시스템을 활용하기 위한 코팅기술의 응용에 관한 연구)

  • 서창민;남승훈;이해무;김용일;김동석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.164-169
    • /
    • 2000
  • The remote measurement system(RMS) as a new experimental method is limited in its application to crack measurements at elevated temperatures because of the oxide layer on the specimen surface. Since TiAlN and Cr coating layers have a high resistance to oxidation and wear, this paper proposed a TiAlN and Cr coating technique for specimens to facilitate the measurement of crack growth behavior using RMS. To investigate the effects of the coating layer, tension and fatigue tests were carried out at room temperature and at 538$^{\circ}C$, using specimens of 1Cr-1Mo-0.25V steel. From the experimental results, it was found that the mechanical properties of the TiAlN and Cr coated specimens were similar to those of the substrate. Accordingly, the TiAlN and Cr coated layer had hardly any influence on the fatigue crack propagation.

  • PDF

Electrochemical Analysis on Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution

  • Kim, Jun Hwan;Kim, In Sup;Chung, Han Sub
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • Flow-Accelerated Corrosion behavior concerning both activation and mass transfer process of SA106 Gr.C steel was studied using rotating cylinder electrode in room temperature alkaline solution by DC and AC electrochemical techniques. Passive film was tanned from pH 9.8 by step oxidation of ferrous product into hydroxyl compound. Corrosion potential shifted slightly upward with rotating velocity through the diffusion of cathodic species. Corrosion current density increased with rotating velocity in pH 6.98, while it soon saturated from 1000 rpm at above pH 9.8. On the other hand the limiting current increased with rotating speed regardless of pH values. It seems that activation process, which represents formation of passive film on the bare metal surface, controls the entire corrosion kinetics

Characterization of Boron Nanoparticles Synthesized with a Thermal Plasma System

  • Shin, Weon-Gyu;Girshick, Steven L.;Oh, Dong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.369-369
    • /
    • 2011
  • In the current work, we demonstrate the gas phase plasma synthesis of ultrafine boron nanoparticles by decomposing boron trichloride (BCl3) gas in an argon-hydrogen thermal plasma and quenching the hot plasma by expansion through a ceramic nozzle, driving the homogeneous nucleation of nanoparticles. It is shown that ultrafine nanoparticles can be produced from the experiments. We also show the characterization results regarding the oxidation of boron nanoparticles at room temperature using X-ray Photoelectron Spectroscopy (XPS) and the combined Scanning Transmission Electron Microscope (STEM) and Electron Energy Loss Spectroscopy (EELS).

  • PDF

Surface Characteristics of Hydroxyapatite Coated Surface on Nano/Micro Pore Structured Ti-35Ta-xNb Alloys

  • Jo, Chae-Ik;Choe, Han-Choel
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.185-185
    • /
    • 2014
  • In this study, we investigated surface characteristics of hydroxyapatite coated surface on nano/micro pore structured Ti-35Ta-xNb alloys. This paper was focus on morphology and corrosion resistance of Anodic oxidation. To prepare the samples, Ti-35Ta-xNb (x= 0, 10 wt. %) alloys were manufactured by arc melting and heat-treated for 12 h at $1050^{\circ}C$ in Ar atmosphere at $0^{\circ}C$ water quenching. Micro-pore structured surface was performed using anodization with a DC power supply at 280 V for 3 min, nanotube formed on Ti-35Ta-xNb alloys was performed using DC power supply at 30 V in 60 min at room temperature. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction.

  • PDF