• Title/Summary/Keyword: Room Volume

Search Result 541, Processing Time 0.033 seconds

A Numerical Study on Pressure Fluctuation and Air Exchange Volume of Door Opening and Closing Speeds in Negative Pressure Isolation Room (음압격리병실에서의 병실 문의 개폐속도에 따른 실간 압력변동 및 공기교환량에 대한 해석적 연구)

  • Kim, Jun Young;Hong, Jin Kwan
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Purpose: In this study, through the comparison of the pressure fluctuation and air exchange volume in negative isolation room according to the type of the door and door opening/closing speeds, which is one of the main factors causing the cross contamination of the negative pressure isolation room, establishes standard operating procedures to prevent cross contamination in high risk infectious diseases and isolation room design. Methods: In this study, the air flow each of the room is analyzed using ANASYS CFX CODE for flow analysis. In addition, the grid configuration of the door is constructed by applying Immersed Solid Methods. Results: The pressure fluctuation due to the opening and closing of the hinged door was very large when the moment of the hinged door opened and closed. Especially, at the moment when the door is closed, a pressure reversal phenomenon occurs in which the pressure in the isolation room is larger than the pressure in the anteroom. On the other hand, the pressure fluctuation due to the opening and closing of the sliding door appeared only when the door was closed, but the pressure reversal phenomenon not occurred at the moment when the sliding door was closed, unlike the hinged door. As the opening and closing speed of the hinged door increases, the air exchange volume is increased. However, as the opening and closing speed of the sliding door is decreased, the air exchange volume is increased. Implications: According to the results of this study, it can be concluded that the pressure fluctuation due to the opening and closing of the hinged door is greater than the pressure fluctuation due to the opening and closing of the sliding door. In addition, it can be confirmed that the pressure reversal phenomenon, which may cause to reduce the containment effect in negative pressure isolation room, is caused by the closing of the hinged door. Therefore, it is recommended to install a sliding door to maintain a stable differential pressure in the negative isolation room. Also, as the opening and closing speed of the hinged door is slower and the opening and closing speed of the sliding door is faster, the possibility of cross contamination of the room can be reduced. It is therefore necessary to establish standard operating procedures for negative isolation room for door opening and closing speeds.

A Study on the Plan of Storge Space in Urban Housing -base on the volume calculation of storage space for clothes and bed-clothes in each rooms- (도시주택 수납공간 계획에 관한 연구 -침실별 의.침 구류 수납공간 체적산정을 중심으로-)

  • 손광제
    • Journal of the Korean Home Economics Association
    • /
    • v.27 no.4
    • /
    • pp.73-84
    • /
    • 1989
  • The purpose of this study is to induce user to use storage equipment as fixed storage space in urban housing. The object of investigation is limited to the resident of detached and apartment house in Daegu, analysised the problems and their attitueds of using storage equipments amount of cloths and bel-clothes. On the basis of these recommended the optimum volume of storage space for clothes and bed-clothes by family types. Applied to the standard of detached house, the optimum volume of storage space for clothes and bed-clothes in each rooms are as following. 1) The volume of master room is ranged 7.34M3 and 8.65M3 the average is 7.97M3. 2) Children's room is ranged 1.18M3 and 3.26M3, the average is 2.51M3 under number of users and their age. 3) The aged room is calculated average 6.53M3.

  • PDF

A Measurement and Evaluation on the Cabins' Thermal Conditions of Large Cruiser in the Winter (대형 크루저 선실의 동절기 온열환경 측정평가)

  • Hwang, Kwang-Il;Moon, Tae-Il;Park, Min-Kang;Shim, Jae-Gun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.231-232
    • /
    • 2006
  • The purpose of this study is to measure and evaluate the thermal conditions of large cruiser's cabin. As the result of this study, followings are cleared. The air volume supplied to the 2 types of cabins is quite diffenrent. Temperature differences in the Room A which is located A deck and supplied enough air volume is stable all around the cabin. But Room B which is located B deck and supplied comparatively small air volume has temperature distribution problems, like time-dependent differences, vertical differences. To serve more comfort and productivity of Room B, it is strongly recommended to do a T.A.B.(Testing, Adjusting and Balancing) for more air volume and/or to design new air flow path to make air stay longer.

  • PDF

Elevated Temperature Tensile Properties of Austempered Ductile Irom (Mo-Ni-Cu계 오스템퍼 구상흑연주철의 고온특성)

  • Yi, Young-Sang;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.4
    • /
    • pp.323-330
    • /
    • 1991
  • The relationships between the microstructure changes, retained austenite volume and elevated temperature tensile properties of Mo-Ni-Cu ADI corresponding to various austempering temperatures and time were investigated, After the $250^{\circ}C$ tensile test for the test piece austempered at $270^{\circ}C$ the accicular bainite structure was observed blunted under room temperature microscope. In the case of $370^{\circ}C$ austempering, the feathery bainite lath spacing was observed broadened. But after the $450^{\circ}C$ tensile test, bainitic features could not be observed. As the testing temperature increased, retained austenite volume tested at room temperature decreased. Especially, after the $450^{\circ}C$ tensile test retained austenite volume approached nearly to zero. A little higher tensile properties appeared at $250^{\circ}C$ testing than those at room temperature.

  • PDF

Effect on the Volume Resistivity of Silicone Rubber due toTemperature Variation (온도변화가 실리콘 고무의 체적고유저항에 미치는 영향)

  • Kim, T.Y.;Ku, K.M.;Cho, K.S.;Lee, C.H.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.55-58
    • /
    • 2002
  • In this paper, the volume resistivity properties of silicone rubber investigated due to temperature dependence. And the measurement of volume resistivity is measured from 1, 5 and 10 minutes when the each applied voltage, for example, DC 100[V], 250[V], 500[V] and 1000[V], is applied. according to the step voltage application method. As a result, The volume resistivity is higher high voltage than low voltage at the room temperature, but is higher low voltage than high voltage at high temperature.

  • PDF

A Study on the Environmental Performance Level Measurement in the Lecture Room during Winter Time (동계 대학강의실 환경성능수준 측정에 관한 연구)

  • Ahn, Tae-Kyung
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.2
    • /
    • pp.3-9
    • /
    • 2018
  • This study is designed to measure the indoor environment and research on the environmental situation in the lecture room where the lecture is conducted during the winter time in order to understand the level of environment in the lecture room and then suggest the method of improving the environment in the lecture room in the future. The findings are as follows. First, the number of ventilation measured at Lecture Room 1 was 1.2 times/hour while that at Lecture Room 2 was 2.2 times/hour. Second, the lighting at Lecture Room 1 and 2 was 650~700 lux while the noise at Lecture Room 1 and 2 was not more than 60dB. Third, Group 1 and Group 2 felt in the same way that the air quality in the lecture room was not good when the air quality was measured in 30 minutes after the start of lecture. Fourth, both Group 1 and Group 2 showed the lowered concentration on the class in 30 minutes after the start of the class when the room was heated. But Group 1 got less drop in the concentration when they was put in the non-heated room. Fifth, As for the change in the carbon dioxide volume during lecture, the carbon dioxide volume in the room where the windows was closed rose 1,000~1,400ppm from that at the time of start, thus showing that the indoor air quality got worsened. In addition, it is hard to control the indoor temperature due to the heating and non-heating. Accordingly, it is necessary to get the heating system which can make the ventilation in order to keep the environmental level in the lecture room to a certain level and keep the proper indoor temperature.

Airflow Characteristic Experiments for the Upper Plenum Design of Clean Room (클린룸의 상부 플레넘 설계를 위한 유동특성 실험)

  • Oh, M.D.;Bae, G.N.;Kim, S.C.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.276-289
    • /
    • 1989
  • The airflow characteristics in both the upper plenum and the clean space of clean room are investigated by measuring the pressure distribution of the upper plenum and the velocity profile in the clean space, at the various conditions of the supplied airflow rate, the volume of upper plenum and the air supply type. The performance of vertical air supply type and horizontal air supply type is analyzed in terms of the airflow uniformity which is frequently used in indicating the clean room performance, and the relations among the volume of upper plenum, the supplied airflow rate and the airflow uniformity are confirmed. The results of this experimental study can be applied to the designing of the upper plenum of clean room.

  • PDF

A Study on the Methodology of the Plasticity Enhancement of Amorphous Alloys (비정질 합금의 소성 증가 방법에 대한 연구)

  • Park, K.W.;Lee, C.M.;Lee, K.B.;Lee, J.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.486-490
    • /
    • 2008
  • This study demonstrates that preloading via the elastostatic compression imposed on amorphous alloys at room temperature induces homogeneous plastic strain associated with structural disordering. This structural disordering causes disorder, which at room temperature creates excess free volume and in turn enhances the plasticity. In this study, we investigated the effects of various parameters, such as stress level, flow rate and preloading time, on the degree of the structural disordering at room temperature. On the basis of the present findings, we proposed a method of enhancing the plasticity of amorphous alloys.

The Association of Hospital Volume of Percutaneous Coronary Intervention with Cardiac Mortality

  • Kim, Jae-Hyun;Kim, Jang-Mook;Park, Eun-Cheol
    • Health Policy and Management
    • /
    • v.28 no.2
    • /
    • pp.168-177
    • /
    • 2018
  • Background: This study investigates the potential volume and outcome association of coronary heart disease (CHD) patients who have undergone percutaneous coronary intervention (PCI) using a large and representative sample. Methods: We used a National Health Insurance Service-Cohort Sample Database from 2002 to 2013 released by the Korean National Health Insurance Service. A total of 8,908 subjects were analyzed. The primary analysis was based on Cox proportional hazards models to examine our hypothesis. Results: After adjusting for confounders, the hazard ratio of thirty-day and 1-year mortality in hospitals with a low volume of CHD patients with PCI was 2.8 and 2.2 times higher (p=0.00) compared to hospitals with a high volume of CHD patients with PCI, respectively. Thirty-day and 1-year mortality of CHD patients with PCI in low-volume hospitals admitted through the emergency room were 3.101 (p=0.00) and 2.8 times higher (p=0.01) than those in high-volume hospitals, respectively. Only 30-day mortality in low-volume hospitals of angina pectoris and myocardial infarction patients with PCI was 5.3 and 2.4 times those in high-volume hospitals with PCI, respectively. Conclusion: Mortality was significantly lower when PCI was performed in a high-volume hospital than in a low-volume hospital. Among patients admitted through the emergency room and diagnosed with angina pectoris, total PCI volume (low vs. high) was associated with significantly greater cardiac mortality risk of CHD patients. Thus, There is a need for better strategic approaches from both clinical and health policy standpoints for treatment of CHD patients.

Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure (페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향)

  • Lee, Seung-Yong;Jeong, Sang-Woo;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.