• Title/Summary/Keyword: Rodent

Search Result 305, Processing Time 0.12 seconds

Anti-allodynic Efficacy of NMDA Antagonist Peptide and Noradrenaline Alone and in Combination in Rodent Neuropathic Pain Model

  • Nasirinezhad, Farinaz;Hosseini, Marjan;Salari, Sajad
    • The Korean Journal of Pain
    • /
    • v.28 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Background: The present experiment was conducted to identify the cooperative effect of serine histogranin (SHG) and noradrenaline in alleviating peripheral neuropathic pain. Methods: Chronic constriction injury of the right sciatic nerve was used to induce chronic neuropathic pain. For drug delivery, a PE10 tube was inserted into the subarachnoid space. Acetone drops and a $44^{\circ}C$ water bath were used to evaluate the cold and heat allodynia, respectively. Placing and grasping reflexes were used to assess the locomotor system. Results: SHG at 0.5 and $1{\mu}g$significantly (P < 0.05) decreased the thermal allodynia. The cold allodynia was also significantly reduced by intrathecal injections of 0.5 (P < 0.05) and $1{\mu}g$(P < 0.001) of SHG. $1{\mu}g$of noradrenaline, but not $0.5{\mu}g$, significantly alleviated the cold (P < 0.01) and thermal (P < 0.05) allodynia. The ameliorating effect of noradrenaline or SHG disappeared when the two compounds were administrated in equal concentrations. A significant difference (P < 0.01 in the acetone and P < 0.05 in the heat) was observed in the groups under equal doses of the two compounds, with a lower effectiveness of the combination therapy. Conclusions: Our findings suggest that the simultaneous administrations of noradrenaline and SHG do not result in synergistic analgesia, and combination therapy may not be a good approach to the treatment of chronic neuropathic pain syndrome.

Odorant Stimulation Promotes Survival of Rodent Olfactory Receptor Neurons via PI3K/Akt Activation and Bcl-2 Expression

  • Kim, So Yeun;Yoo, Seung-Jun;Ronnett, Gabriele V;Kim, Eun-Kyoung;Moon, Cheil
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.535-539
    • /
    • 2015
  • Olfactory stimulation activates multiple signaling cascades in order to mediate activity-driven changes in gene expression that promote neuronal survival. To date, the mechanisms involved in activity-dependent olfactory neuronal survival have yet to be fully elucidated. In the current study, we observed that olfactory sensory stimulation, which caused neuronal activation, promoted activation of the phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and the expression of Bcl-2, which were responsible for olfactory receptor neuron (ORN) survival. We demonstrated that Bcl-2 expression increased after odorant stimulation both in vivo and in vitro. We also showed that odorant stimulation activated Akt, and that Akt activation was completely blocked by incubation with both a PI3K inhibitor (LY294002) and Akt1 small interfering RNA. Moreover, blocking the PI3K/Akt pathway diminished the odorantinduced Bcl-2 expression, as well as the effects on odorant-induced ORN survival. A temporal difference was noted between the activation of Akt1 and the expression of Bcl-2 following odorant stimulation. Blocking the PI3K/Akt pathway did not affect ORN survival in the time range prior to the increase in Bcl-2 expression, implying that these two events, activation of the PI3K pathway and Bcl-2 induction, were tightly connected to promote post-translational ORN survival. Collectively, our results indicated that olfactory activity activated PI3K/Akt, induced Bcl-2, and promoted long term ORN survival as a result.

Comparative Analysis of Phospholipase D2 Localization in the Pancreatic Islet of Rat and Guinea Pig

  • Ryu, Gyeong-Ryul;Kim, Myung-Jun;Song, Chan-Hee;Min, Do-Sik;Rhie, Duck-Joo;Yoon, Shin-Hee;Hahn, Sang-June;Kim, Myung-Suk;Jo, Yang-Hyeok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.211-215
    • /
    • 2003
  • To examine the localization pattern of phospholipase D2 (PLD2) in the pancreatic islet (the islet of Langerhans) depending on species, we conducted a morphological experiment in the rat and guinea pig. Since individual islets display a typical topography with a central core of B cell mass and a peripheral boundary of A, D, and PP cells, double immunofluorescent staining with a panel of antibodies was performed to identify PLD2-immunoreactive cells in the islets PLD2 immunoreactivity was mainly present in A and PP cells of the rat pancreatic islets. And yet, in the guinea pig, PLD2 immunoreactivity was exclusively localized in A cells, and not in PP cells. These findings suggest a possibility that PLD2 is mainly located in A cells of rodent pancreatic islets, and that the existence of PLD2 in PP cells is not universal in all species. Based on these results, it is suggested that PLD2 may play a significant role in the function of A and/or PP cells via a PLD-mediated signaling pathway.

Histochemically-reactive Zinc in the Rat Dorsal Root Ganglion (DRG) Neurons: Zinc Selenium Autometallography (랫드 척수신경절내 zinc의 분포양상: Zinc Selenium Autometallography)

  • Kim, Yi-Suk;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.40 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • The present study was designed to demonstrate ionic zinc in the rat DRG by means of zinc selenium autometallography($ZnSe^{AMG}$). Ganglion cells varied in size from 15 to 100 ${\mu}m$. The smaller neurons were strongly stained with AMG, whereas the larger cells were weakly stained. Each large ganglion cell was surrounded by perineuronal satellite cells, showing apparent AMG staining. We demonstrated for the first time the existence of zinc-containing satellite cells in the rodent DRG. Using electron microscopy, fine AMG grains were observed scattered in the somata of the DRG neurons, especially small cells. However, much lower concentrations of the AMG grains occupied in the large cells, and these were mostly localized in lysosome-like organelles. These results indicate that zinc may be involved in sensory transmission in the DRG level.

Distribution and Population Density of Rodents and Chigger Mites in Gokseong-gun of Jeollanam-do, Korea (전남 곡성군에서 포획한 들쥐 분포 및 털진드기의 개체군 밀도)

  • Song, Hyeonje
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.242-246
    • /
    • 2016
  • The distribution and population density of rodents and chigger mites were investigated between April 2013 and November 2013 in the Gokseong-gun of Jeollanam-do, Korea. A total of 79 rodents were collected using Sherman collapsible traps, and among them, 73 were Apodemus agrarius (92.4%), 4 were Crocidura lasiura (5.0%), and 2 were Microtus fortis (2.5%). Sixty-eight out of the 79 rodents were parasitized by chiggers, showing an infestation rate of 86.0% and a chigger index of 74.5; the chigger index of A. agrarius was 75.4. From the trapped field rodents, 5,063 chigger mites were collected and identified with 6 species of 2 genera. Leptotrombidium scutellare was the dominant species with 3,535 chiggers (69.8%), followed by L. pallidum with 777 chiggers (15.3%). This results showed that the distribution of chigger mites differ in dominant species according to seasons. L. pallidum was the predominant chigger collected in April (34.3%), May (70.0%), and June (55.1%); whereas L. scutellare was the predominant chigger collected in September (75.5%), October (71.8%), and November (74.2%).

Hypoglycemic Effect of Eriobotrya japonica(E. japonica) in db/db Mice (db/db 마우스에서 비파의 혈당 저하 효과)

  • Kim, Eun;Kim, Min-Sook;Rhyu, Dong-Young;Min, Oh-Jin;Baek, Hum-Young;Kim, Yung-Jae;Kim, Hyeon-A
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2009
  • E. japonica is a well-known medicinal plant in Japan. The leaves of E. japonica were reported to have a hypoglycemic action. However, seeds of E. japonica are discarded and not used. To elucidate for anti-diabetic effects of E. japonica, Type 2 diabetic mice were allocated to control group, E. japonica leaf, and seed extract group. Animals were fed a 2018S Teklad global 18% protein rodent diet. Animals were received daily oral injections of E. japonica leaf or seed extract at a dose of 200 mg/kg body weight for 6 weeks. Body weight, food intake and water intake, and total adipose tissue weight of animals were significantly reduced by feeding of E. japonica leaf extract. All E. japonica extract groups significantly decreased fasting blood glucose, glycosylated hemoglobin levels, size of adipocytes and serum adiponectins. However, they did not have a beneficial effect on the serum triglyceride and cholesterol in the diabetic animals. These results suggest that E. japonica seed and leaf extracts have a antidiabetic effect by controlling of blood glucose and decrease of size of adipocytes in db/db mice and seed extract is more effective in hypoglycemic action than leaf extract.

Thresholds of Genotoxic and Non-Genotoxic Carcinogens

  • Nohmi, Takehiko
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.281-290
    • /
    • 2018
  • Exposure to chemical agents is an inevitable consequence of modern society; some of these agents are hazardous to human health. The effects of chemical carcinogens are of great concern in many countries, and international organizations, such as the World Health Organization, have established guidelines for the regulation of these chemicals. Carcinogens are currently categorized into two classes, genotoxic and non-genotoxic carcinogens, which are subject to different regulatory policies. Genotoxic carcinogens are chemicals that exert carcinogenicity via the induction of mutations. Owing to their DNA interaction properties, there is thought to be no safe exposure threshold or dose. Genotoxic carcinogens are regulated under the assumption that they pose a cancer risk for humans, even at very low doses. In contrast, non-genotoxic carcinogens, which induce cancer through mechanisms other than mutations, such as hormonal effects, cytotoxicity, cell proliferation, or epigenetic changes, are thought to have a safe exposure threshold or dose; thus, their use in society is permitted unless the exposure or intake level would exceed the threshold. Genotoxicity assays are an important method to distinguish the two classes of carcinogens. However, some carcinogens have negative results in in vitro bacterial mutation assays, but yield positive results in the in vivo transgenic rodent gene mutation assay. Non-DNA damage, such as spindle poison or topoisomerase inhibition, often leads to positive results in cytogenetic genotoxicity assays such as the chromosome aberration assay or the micronucleus assay. Therefore, mechanistic considerations of tumor induction, based on the results of the genotoxicity assays, are necessary to distinguish genotoxic and non-genotoxic carcinogens. In this review, the concept of threshold of toxicological concern is introduced and the potential risk from multiple exposures to low doses of genotoxic carcinogens is also discussed.

Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

  • Kim, Ki Chan;Gonzales, Edson Luck;Lazaro, Maria T.;Choi, Chang Soon;Bahn, Geon Ho;Yoo, Hee Jeong;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.207-243
    • /
    • 2016
  • Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.

Spermiogenosis and fine structure of the sertoli cell junctional specialization in the Jindo dog I. Studies on spermiogenesis in the Jindo dog (진도견(珍島犬)의 정자형성(精子形成)과 Sertoli세포(細胞) 특수(特殊) 연접부(連接部)의 미세구조(微細構造) I. 진도견(珍島犬)의 정자형성(精子形成)에 관한 연구(硏究))

  • Park, Young-seok;Lee, Jae-hong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.281-293
    • /
    • 1992
  • Classification of the cycle of seminiferous epithelia into 12 stages by the morphological changes in acrosomal system and evaluation of the relative frequency of stages and the cell association were histologically performed in the mature Korean native Jin-do dogs. The results were summarized as follows; 1. The minimum number of type A spermatogonia averaged 1.01 at stages I, while maximum number averaged 2.47 at stages XII. Some type A spermatogonia divided at stage XII to produce the type intermediate(IN) spermatogonia at the following stage I. The type IN spermatogonia divided at stage IV to produce the type B spermatogonia at stage V. 2. The type B spermatogonia divided at stage VI to produce the preleptotene primary spermatocytes at stage VII. The secondary spermatocytes observed at stage XII. The secondary spermatocytes observed at stage XII divided to give rise to the round spermatids at the following stage I. The numbers of the first spermatocytes and spermatids were almost constant, respectively, through all the cycles of seminiferous epithelium. 3. The acrosomal vesicle was invaginated to occupy one third to half of spermatid nucleus at the cap phase, which was different from that of rodent and ruminant spermatid nuclei. 4. The relative frequencies of stages I to XII of seminiferous epithelia cycle were 10.34, 4.84, 5.03, 8.22, 10.86, 6.63, 6.42, 18.88, 10.17, 6.18, 7.62% and 4.81%, respectively.

  • PDF

Expression of ErbB receptors in the pre-pubertal and pubertal virgin mammary glands of dairy cows

  • Lee, Byung-Woo;Kim, Yo-Han;Jeon, Byung-Suk;Singh, Naresh Kumar;Kim, Won-Ho;Kim, Meing-Jooung;Yoon, Byung-Il
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.269-273
    • /
    • 2012
  • In the present study, we investigated the expression patterns of ErbB family proteins in the pre-pubertal and pubertal mammary glands of dairy cows in association with gland development. For this study, we performed immunohistochemistry for ErbB-1-4 and Ki-67 cell proliferation marker. We found that the pre-pubertal and pubertal mammary glands had typical structures, including ducts and terminal end buds embedded in the stroma, and no development of lobuloalveolar structures. On immunohistochemistry, ErbB-2 and ErbB-3 were strongly expressed in the cytoplasm and nuclei in the epithelial cells of mammary ducts and terminal end buds, and stromal cells, whereas ErbB-1 and ErbB-4 were weakly expressed only in the cytoplasm of gland epithelium and stromal cells, irrespective of the developmental stage. Cell proliferation was inactive in the mammary gland cell compartments in both phases. Thus, expression of the ErbB family in the developing mammary glands was not associated with their functional effects, such as cell proliferation and lobuloalveolar development. In conclusion, ErbB receptors were differentially expressed in the epithelial and stromal cells of virgin mammary glands of dairy cows. Compared with rodent mammary glands, ErbB-3 and ErbB-4 were found to be highly expressed in bovine mammary glands.