• Title/Summary/Keyword: Rock site

Search Result 897, Processing Time 0.143 seconds

Interpretation of Surface Contamination and Genesis on the Stupa of the State Preceptor Jigwang from the Beopcheonsaji Temple Site in Wonju, Korea (원주 법천사지 지광국사탑의 표면오염 및 성인 해석)

  • Kang, San Ha;Lee, Ju Mok;Lee, Gyu Hye;Kim, Sa Duk;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.211-225
    • /
    • 2018
  • The Stupa of the State Preceptor Jigwang from the Beopcheonsaji temple site in Wonju (National Treasure No. 101) was built in the Goryeo Period (around the 11th century), with very excellent style and techniques. It was returned to the Korea after being taken to Osaka of Japan without notice in 1912, and was severely damaged during the Korean War. Subsequently, the Stupa was restored using restoration materials like mortar, and relocated to the National Palace Museum of Korea. Surface contaminants in the Stupa primarily existed around the restoration materials. Black discoloration, which indicates a high discoloration grade, signified a high possession rate in the north and inner regions of the Stupa, which may be related to the relative moisture maintenance time. Most surface contaminants were calcite and gypsum; the black discoloration area underwent secondary discoloration due to air pollution. Moreover, the stone properties exhibited a relatively low discoloration grade, exhibiting crystallized contaminants that partly covered the rock-forming minerals. Overall, the Stupa deteriorated due to discoloration and being covered by lime materials, which were dissolved as the mortar degraded. Hence, it required contaminants removal, surface cleaning and desalination during conservation treatment, in order to control the rate of physicochemical deterioration by contaminants.

The Improvement of Tunnel Construction Cost Standards Considering the Site Conditions in Korea (현장실태를 고려한 국내 터널공사 공사비산정기준 개선)

  • Ahn, Bang-Ryul;Lee, Han-Soo;Oh, Jae-Hoon;Song, Tae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.26-35
    • /
    • 2020
  • Tunnel construction is an important part of Korean public construction projects. Although the development of various equipment and technologies has led to advances in tunnel construction methods that are implemented on sites, the cost standards related to such works do not yet reflect the realities of the construction sites. A literature review and site surveys were conducted to suggest reasonable cost standards for tunnel work that reflects the realities of the field. First, each item in the cost standards for tunnel work, as established in the Construction Standard Production Rates, were analyzed. The results were compared with the actual costs implemented on tunnel projects. The key items analyzed included those regarding the work cycle time, such as rock classification, profiling survey, drilling speed, and muck-disposal processing equipment combination, as well as the number of people put to tunneling work. Based on the site survey results, improved estimates regarding the cycle time per one tunnel drilling blast, drilling speed of the machine, muck disposal processing equipment combination, and the number of people put to tunneling work were suggested. This study suggests the cost standards that reflect the realities of tunneling sites. The results are expected to help ensure adequate costs for tunnel construction projects.

Construction Characteristics and Physicochemical Properties of Soil Layers from Baekje Dongnamri Site in Buyeo, Korea (부여 동남리 백제유적 출토 토층의 물리화학적 성질과 제작특성)

  • Kim, Ae Ra;Lee, Chan Hee;Kim, Ran Hee;Bok, Mun Kang
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.209-221
    • /
    • 2013
  • This study is to interpret the construction characteristics and the provenance of soil layers from the Dongnamri site in Baekje Kingdom of Buyeo, Korea. The soil layers is divided into present age layer, Baekje layer and lower part layer, and the soils formed in the Baekje Kingdom period is divided into the Baekje 1st layer and the Baekje 2nd layer according to temporal intervals. The soil layers gradually becomes darker in color and higher in mineral content towards the lower part layer. However, the particular distinction between layers of the soils could not be identified. Additionally, the soil layers show a similar characteristics of mineralogy and geochemical evolution regardless of the layers. This indicates that the sites were made with weathered soil from an identical bed rock, and the site show a similarity to the surrounding soil, indicating its possibility of being the original materials. However, through the analysis of particle size, the first and second Baekje layers occurred that these layers were formed by setting up the soil with high content of sand on the bottom and stacking the soil with high content of silt on top of it.

A Cause Analysis of Missed Fractures in an Emergency Medical Center (응급센터에 내원한 외상환자에서 간과된 골절의 요인 분석)

  • Park, Deuk-Hyun;Lee, Sung-Sil;Kim, Dong-Un;Cho, Hyun-Young;Lee, Young-Geun;Kim, Jun-Su;Jun, Jin;Kim, Young-Sik;Ha, Young-Rock;Sin, Tae-Yong
    • Journal of Trauma and Injury
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Purpose: A missed fracture is a very common occurrence in the Emergency Department (ED) and can have serious results because of delays in treatment, resulting in long-term disability. It is also one of the most common causes leading to medical legal issues. We analyzed the causes of missed fractures by using a bone scan which is known to be an effective tool for diagnosing bony lesions. Methods: We reviewed the medical records of trauma patients who underwent a bone scan after being discharged the ED from September 2006 to March 2008. Cases of missed fractures were identified by using electronic medical records to review each diagnosis. Definition of missed fracture was read after bone scan by radiologist. We decided that there was no fracture if we read 'trauma-related lesion' or 'cannot rule out fracture' on a bone scan read by a radiologist. Enrolled patients were analyzed by age, sex, time until bone scan and Injury Severity Score (ISS). Patients were divided into two groups, alert mentality and not-alert mentality, so there were split between a diagnosis group and a missed fracture group. ISS was also used in determining the severity of the patient's injury upon discharge from the ED. Results: A total of 532 patients were enrolled in this study. Of those, 487 patients were in the diagnosis group, and 45 patients (8.4%) were discovered to have had a fracture. Of the 45 missed fracture patients, 34 patients (6.4%) had one-site fractures, 8 patients (1.5%) had two-site fractures, and 3 patients (0.6%) had three-site fractures. The most commonly missed fracture was multiple rib fractures (18 patients, 30.5%), followed by lumbosacral (LS) spine fractures (10 patients, 16.9%), thoracic spine fractures (8 patients, 13.6%), and clavicle fractures (6 patients, 10.2%). Mean age was $50.12{\pm}18.54$ years in the diagnosis group and $57.38{\pm}16.88$ years in the missed fracture group. For the diagnosis group, the mean ISS was $9.03{\pm}8.26$, but in the missed fracture group it was $17.53{\pm}9.69$. Missed fractures were much more frequent in the not-alert mentality (p<0.01) and in the high (ISS$ ISS{\geq}16$) group (p<0.01). Conclusion: Missed fractures occur most frequent in patients of old age, not-alert mentality, and high ISS. Multiple rib and spine fractures were found to be the most frequent missed fractures, regardless of trauma severity. This study also shows a high possibility of clavicle and scapula fractures in patients with severe trauma.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Landscape of Erosional Basin in Korea -In case of land-use changes of hills- (우리 나라 침식분지의 경관 -구릉지의 토지이용 변화를 중심으로-)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.83-96
    • /
    • 2000
  • Erosional basins formed in middle and upper reaches of Korean great rivers have been main life space of local small and middle cities, but previous studies on erosional basins are widely apart from residents' life and are in shortage with the endeavor to elucidate the man and environment relationship. This paper analyzes the factors and the modes of land-use changes of hills in the erosional basin. In this paper four erosional basins with different geological conditions are selected to elucidate the effect of geological factor(Geochang: granite, Chogye: metamorphic rock, Angye: gravelly sedimentary rock, Maseong: limestone). And the distribution of land use on the transverse and longitudinal cross-section map of the hill is described. The landscape of erosional basin is consisted of surrounding mountains, hills, dissected valleys, and incoming river's floodplain. Dissected valleys and incoming river's floodplain were reclaimed early as paddy field and hills have been used as woodland up to recently. Residents have a new appreciation of hills as a productive hill out of a traditional holy space[mountain] by influence of capitalistic thought that 'natural environment is a sort of productive resource'. Population increase is the another pressure of hill reclamation. The modes of landscape changes due to natural conditions are as follow: (1) In Geochang basin with dense tectolineament spacing, the gentle part of hill is used as field, orchard and agricultural-industrial complex site and the steep part is as woodland. (2) Hills in Angye basin with sparse tectolineament spacing are relatively flat because of maintaining a part of original denudational surface, and are used as orchids, field, paddy fields and agricultural-industrial complex site. The dissection valleys between hills are gentle concave and are used as paddy fields. (3) Hills in Maseong basin are wide and flat, and are used as fields, orchards, and agricultural-industrial complex site. (4) Because hills in Chogye basin, a closed type, are weared by affluents and are narrow and short. Hills are used as woodland and wide dissected valleys are reclaimed as paddy fields.

  • PDF

Interpretation of the Manufacturing Characteristics and the Mineral and Chemical Composition of Neolithic Pottery Excavated from the Jungsandong Site, Yeongjong Island, South Korea (영종도 중산동 신석기시대 토기의 광물 및 화학조성과 제작특성 해석)

  • Lee, Chan Hee;Kim, Ran Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.1
    • /
    • pp.4-31
    • /
    • 2018
  • The Neolithic pottery excavated from the Jungsandong site has been classified into four types of pottery (I: feldspar type, II: mica type, III: talc type and IV: asbestos type) according to their mineral composition. These four types of potteries generally appear to have undergone incomplete firing, while the level of oxidation in the type I pottery objects, which have a relatively higher clay content, was found to be particularly low. The type III objects, which have a high talc content, are judged to have been somewhat slow in removing carbon because they contain saponite belonging to the smectite group. Of the four types of pottery, type IV showed the highest redness and the most uniform characteristics, thus indicating a good level of oxidation. In particular, fixed carbide (C; 33.7 wt.%) with a thickness of about 1mm, and originating from organic substances, was detected inside the walls of the type I pottery, while the deep radial cracks in the outer surfaces of the pottery are thought to have been caused by repeated thermal shocks. Given that all of the pottery except for the type I artifacts are considered to be have been made for storage purposes, those containing talc and tremolite are easy to done liquid storing vessels based on an analysis of their material characteristics. As for the type II relics, which are composed of various minerals and exhibit poor physical properties, they seem to have been used for simple storage purposes. As domestic talc and asbestos mines were concentrated in the areas of Gyeonggi, Gangwon, Chungbuk, and Chungnam, it seems likely that talc and tremolite were produced as contiguous minerals. Considering the distance between the remains in Jungsandong and these mines and their geographical distribution, there is a possibility - albeit somewhat slight - that these mines were developed for the mining of various minerals. Although ultramafic rock masses - such as serpentine capable of generating talc and tremolite - have not been found in the Jungsandong area, limestone and biotite granite containing mica schist have been identified in the northwestern part of Yeongjong Island, indicating that small rock masses might have formed there in the past. Therefore, it is judged necessary to accumulate data on pottery containing talc and tremolite, other than the remains in Jungsandong, and to investigate the rocks and soils in the surrounding area with greater precision. The firing temperatures of the pottery found at the Jungsandong site were interpreted by analyzing the stability ranges of the mineral composition of each type. As a result, they have been estimated to range from 550 to $800^{\circ}C$ for the type I artifacts, and from 550 to $700^{\circ}C$ for the type I, II and IV artifacts. However, these temperatures are not the only factors to have affected their physical properties and firing temperature, and the types, particle sizes, and firing time of the clay should all be taken into consideration.

Implication and Its Meaning Contact of Gwangje-jeong's Place Transmission (광제정(光霽亭) 장소 전승의 함의와 의미맥락)

  • Rho, Jae-Hyun;Lee, Suk-Woo;Lee Jung-Han;Jung, Kyung-Suk;Kim, Young-Suk
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.40-51
    • /
    • 2011
  • The purpose of the study was to understand the symbol and locational meanings in building and relocating Gwangje-jeong(光霽亭) through the analysis and interpretation on the construction background, history, the location and its characteristics. Concerning physical environment, human activities, the symbol and meanings of the formal Gwangje-jeong site and the present location, the study was concluded about the site and its meaning of tradition as following. Gwangje, the name of the pavilion, represents the fidelity of Maedang(梅堂) Yangdon(楊墩) who refused as Seonbee(a man of virtue) to be tainted with the corrupt world, which was related with the situation at that time. It implies Maedang's feeling of realizing Noojeongjeyong(樓亭題詠) of Gwangje-jeong along with the high spirit of Gwangpoongjewol(光風霽月). According to the record about rebuilding Gwangje-jeong, Maedang was the very person who planted plum flowers at the pavilion and put up the tablet of its name, Gwangje. Even after his death, Gwangje-jeong was the symbol indicating Yangdon, given the triple high ground and the planting of plum flowers. Also, Sookho(宿虎) town at the entrance of Gwangje-jeong and Bokhoam(伏虎巖: a rock) at the right side of the pavilion signifies the location for praising Maedang Yangdon, and the Yangjipha's Oensi(五言詩: five words verse) engraved on the rock gives a good description about the place, Agyesa that worshiped Yangdon. As Agye-Sa(阿溪祠) where Yangdon was worshiped and praised had been abolished in the 5th year under the Kojong's reign(1868), the spirit praising Maedang had finally been used for the relocation of Gwangje-jeong. Despite the relocation of Gwangje-jeong, the old Gwangje-jeong site has remained at least for 359years at Hucheonli, and its surroundings have maintained the name 'Gwangje' as the front place name morpheme, for example, 'Gwangje-jeong,' 'Gwangje Town,' 'Gwangje Bridge' and 'Gwangje Creek,' for symbolizing the praising of Maedang. Gwangje-jeong, as the center place of solidarity among Namwon Yang's family clan, has been able to maintain its symbol and meanings in spite of relocation, mainly because of the fellowship among the descendants, family clan and alumni who respected virtuous achievements of ancestors and shared the agony of the time. In addition, the symbolism has been preserved since the spirit of Gwangpoonjewol of Yangdon and his high character were cherished along with the spirit of Bongseon(奉先) that inherited and kept virtuous achievements of ancestors.

A Study on the Architecture of the Original Nine-Story Wooden Pagoda at Hwangnyongsa Temple (황룡사 창건 구층목탑 단상)

  • Lee, Ju-heun
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.2
    • /
    • pp.196-219
    • /
    • 2019
  • According to the Samguk Yusa, the nine-story wooden pagoda at Hwangnyongsa Temple was built by a Baekje artisan named Abiji in 645. Until the temple was burnt down completely during the Mongol invasion of Korea in 1238, it was the greatest symbol of the spiritual culture of the Korean people at that time and played an important role in the development of Buddhist thought in the country for about 700 years. At present, the only remaining features of Hwangnyongsa Temple, which is now in ruins, are the pagoda's stylobate and several foundation stones. In the past, many researchers made diverse inferences concerning the restoration of the original structure and the overall architecture of the wooden pagoda at Hwangnyongsa Temple, based on written records and excavation data. However, this information, together with the remaining external structure of the pagoda site and the assumption that it was a simple wooden structure, actually suggest that it was a rectangular-shaped nine-story pagoda. It is assumed that such ideas were suggested at a time when there was a lack of relevant data and limited knowledge on the subject, as well as insufficient information about the technical lineage of the wooden pagoda at Hwangnyongsa Temple; therefore, these ideas should be revised in respect of the discovery of new data and an improved level of awareness about the structural features of large ancient Buddhist pagodas. This study focused on the necessity of raising awareness of the lineage and structure of the wooden pagoda at Hwangnyongsa Temple and gaining a broader understanding of the structural system of ancient Buddhist pagodas in East Asia. The study is based on a reanalysis of data about the site of the wooden pagoda obtained through research on the restoration of Hwangnyongsa Temple, which has been ongoing since 2005. It is estimated that the wooden pagoda underwent at least two large-scale repairs between the Unified Silla and Goryeo periods, during which the size of the stylobate and the floor plan were changed and, accordingly, the upper structure was modified to a significant degree. Judging by the features discovered during excavation and investigation, traces relating to the nine-story wooden pagoda built during the Three Kingdoms Period include the earth on which the stylobate was built and the central pillar's supporting stone, which had been reinstalled using the rammed earth technique, as well as other foundation stones and stylobate stone materials that most probably date back to the ninth century or earlier. It seems that the foundation stones and stylobate stone materials were new when the reliquaries were enshrined again in the pagoda after the Unified Silla period, so the first story and upper structure would have been of a markedly different size to those of the original wooden pagoda. In addition, during the Goryeo period, these foundation stones were rearranged, and the cover stone was newly installed; therefore, the pagoda would seem to have undergone significant changes in size and structure compared to previous periods. Consequently, the actual structure of the original wooden pagoda at Hwangnyongsa Temple should be understood in terms of the changes in large Buddhist pagodas built in East Asia at that time, and the technical lineage should start with the large Buddhist pagodas of the Baekje dynasty, which were influenced by the Northern dynasty of China. Furthermore, based on the archeological data obtained from the analysis of the images of the nine-story rock-carved pagoda depicted on the Rock-carved Buddhas in Tapgok Valley at Namsan Mountain in Gyeongju, and the gilt-bronze rail fragments excavated from the lecture hall at the site of Hwangnyongsa Temple, the wooden pagoda would appear to have originally been an octagonal nine-story pagoda with a dual structure, rather than a simple rectangular wooden structure.

Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 원소거동과 광물조성 특성)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.137-151
    • /
    • 2013
  • This study is focused on element behaviors and mineral compositions of the fault rock developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using XRF, ICP, XRD, and EPMA/BSE in order to better understand the chemical variations in fault rocks during the fault activity, with emphasis on dependence of chemical mobility on mineralogy across the fault zone. As one of the main components of the fault rocks, $SiO_2$ shows the highest content which ranges from 61.6 to 71.0%, and $Al_2O_3$ is also high as having the 10.8~15.8% range. Alkali elements such as $Na_2O$ and $K_2O$ are in the range of 0.22~4.63% and 2.02~4.89%, respectively, and $Fe_2O_3$ is 3.80~12.5%, indicating that there are significant variations within the fault rock. Based on the chemical characteristics in the fault rocks, it is evident that the fault gouge zone is depleted in $Na_2O$, $Al_2O_3$, $K_2O$, $SiO_2$, CaO, Ba and Sr, whereas enriched in $Fe_2O_3$, MgO, MnO, Zr, Hf and Rb relative to the fault breccia zone. Such chemical behaviors are closely related to the difference in the mineral compositions between breccia and gouge zones because the breccia zone consists of the rock-forming minerals including quartz and feldspar, whereas the gouge zone consists of abundant clay minerals such as illite and chlorite. The alteration of the primary minerals leading to the formation of the clay minerals in the fault zone was affected by the hydrothermal fluids involved in fault activity. Taking into account the fact that major, trace and rare earth elements were leached out from the precursor minerals, it is assumed that the element mobility was high during the first stage of the fault activity because the fracture zone is interpreted to have acted as a path of hydrothermal fluids. Moving toward the later stage of fault activity, the center of the fracture zone was transformed into the gouge zone during which the permeability in the fault zone gradually decreased with the formation of clay minerals. Consequently, elements were effectively constrained in the gouge zone mostly filled with authigenic minerals including clay minerals, characterized by the low element mobility.